
Graph Neural Networks with Heterophily

Jiong Zhu,1 Ryan A. Rossi,2 Anup Rao,2 Tung Mai,2
Nedim Lipka,2 Nesreen K. Ahmed,3 Danai Koutra1

1University of Michigan, Ann Arbor, USA
2Adobe Research, San Jose, USA

3Intel Labs, Santa Clara, USA
jiongzhu@umich.edu, {ryrossi, anuprao, tumai, lipka}@adobe.com, nesreen.k.ahmed@intel.com, dkoutra@umich.edu

Abstract

Graph Neural Networks (GNNs) have proven to be useful for
many different practical applications. However, many exist-
ing GNN models have implicitly assumed homophily among
the nodes connected in the graph, and therefore have largely
overlooked the important setting of heterophily, where most
connected nodes are from different classes. In this work, we
propose a novel framework called CPGNN that generalizes
GNNs for graphs with either homophily or heterophily. The
proposed framework incorporates an interpretable compatibil-
ity matrix for modeling the heterophily or homophily level
in the graph, which can be learned in an end-to-end fashion,
enabling it to go beyond the assumption of strong homophily.
Theoretically, we show that replacing the compatibility ma-
trix in our framework with the identity (which represents
pure homophily) reduces to GCN. Our extensive experiments
demonstrate the effectiveness of our approach in more realistic
and challenging experimental settings with significantly less
training data compared to previous works: CPGNN variants
achieve state-of-the-art results in heterophily settings with or
without contextual node features, while maintaining compara-
ble performance in homophily settings.

1 Introduction
As a powerful approach for learning and extracting infor-
mation from relational data, Graph Neural Network (GNN)
models have gained wide research interest (Scarselli et al.
2008) and been adapted in applications including recommen-
dation systems (Ying et al. 2018), bioinformatics (Zitnik,
Agrawal, and Leskovec 2018; Yan et al. 2019), fraud de-
tection (Dou et al. 2020), and more. While many different
GNN models have been proposed, existing methods have
largely overlooked several limitations in their formulations:
(1) implicit homophily assumptions; (2) heavy reliance on
contextual node features. First, many GNN models, including
the most popular GNN variant proposed by Kipf and Welling
(2017), implicitly assume homophily in the graph, where most
connections happen among nodes in the same class or with
alike features (McPherson, Smith-Lovin, and Cook 2001).
This assumption has affected the design of many GNN mod-
els, which tend to generate similar representations for nodes
within close proximity, as studied in previous works (Ahmed

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

et al. 2018; Rossi et al. 2020; Wu et al. 2019). However, there
are also many instances in the real world where nodes of dif-
ferent classes are more likely to connect with one another —
in idiom, this phenomenon can be described as “opposites at-
tract”. As we observe empirically, many GNN models which
are designed under implicit homophily assumptions suffer
from poor performance in heterophily settings, which can be
problematic for applications like fraudster detection (Pandit
et al. 2007; Dou et al. 2020) or analysis of protein struc-
tures (Fout et al. 2017), where heterophilous connections
are common. Second, many existing models rely heavily on
contextual node features to derive intermediate representa-
tions of each node, which is then propagated within the graph.
While in a few networks like citation networks, node features
are able to provide powerful node-level contextual informa-
tion for downstream applications, in more common cases
the contextual information are largely missing, insufficient
or incomplete, which can significantly degrade the perfor-
mance for some models. Moreover, complex transformation
of input features usually requires the model to adopt a large
number of learnable parameters, which need more data and
computational resources to train and are hard to interpret.

In this work, we propose CPGNN, a novel approach that
incorporates into GNNs a compatibility matrix that captures
both heterophily and homophily by modeling the likelihood
of connections between nodes in different classes. This novel
design overcomes the drawbacks of existing GNNs men-
tioned above: it enables GNNs to appropriately learn from
graphs with either homophily or heterophily, and is able to
achieve satisfactory performance even in the cases of miss-
ing and incomplete node features. Moreover, the end-to-end
learning of the class compatibility matrix effectively recov-
ers the ground-truth underlying compatibility information,
which is hard to infer from limited training data, and provides
insights for understanding the connectivity patterns within
the graph. Finally, the key idea proposed in this work can nat-
urally be used to generalize many other GNN-based methods
by incorporating and learning the heterophily compatibility
matrix H in a similar fashion.

We summarize the main contributions as follows:

• Heterophily Generalization of GNNs. We describe a
generalization of GNNs to heterophily settings by incorpo-
rating a compatibility matrix H into GNN-based methods,

ar
X

iv
:2

00
9.

13
56

6v
2

 [
cs

.L
G

]
 4

 F
eb

 2
02

1

+
(S1)

Prior Belief
Estimation

(S2) × " layers

Compatibility-
guided

Propagation

-
Classification

#$
(a) Propagation

Empirical $ unknown due
to missing labels

Learned !" Empirical "

#$ → ≈
0.04

0.09

0.91

0.89

0.13

0.07

0.07

0.78

0.02

#' → #' ⋅ #$

, …Neighbors
#!$("#$)!"

Self
#'("#$)

Self
#'(")

(b) Aggregation

(c) Learning of Compatibility

(a)

(b)

(c)

+

Cross-
Entropy

Loss

Figure 1: The general pipeline of the proposed framework (CPGNN) with k propagation layers (§2.2). As an example, we use a
graph with mixed homophily and heterophily, with node colors representing class labels: nodes in green show strong homophily,
while nodes in orange and purple show strong heterophily. CPGNN framework first generates prior belief estimations using an
off-the-shelf neural network classifier, which utilizes node features if available (S1). The prior beliefs are then propagated within
their neighborhoods guided by the learned compatibility matrix H̄, and each node aggregates beliefs sent from its neighbors to
update its own beliefs (S2). We describe the backward training process, including how H̄ can be learned end-to-end in §2.3.

which is learned in an end-to-end fashion.

• CPGNN Framework. We propose CPGNN, a novel ap-
proach that directly models and learns the class compat-
ibility matrix H in GNN-based methods. This formula-
tion gives rise to many advantages including better effec-
tiveness for graphs with either homophily or heterophily,
and for graphs with or without node features. We release
CPGNN at https://github.com/GemsLab/CPGNN.

• Comprehensive Evaluation. We conduct extensive ex-
periments to compare the performance of CPGNN with
baseline methods under a more realistic experimental setup
by using significantly fewer training data comparing to the
few previous works which address heterophily (Pei et al.
2020; Zhu et al. 2020). These experiments demonstrate the
effectiveness of incorporating the compatibility matrix H
into GNN-based methods.

2 Framework
In this section we introduce our CPGNN framework, after
presenting the problem setup and important definitions.

2.1 Preliminaries
Problem Setup. We focus on the problem of semi-supervised
node classification on a simple graph G = (V, E), where V
and E are the node- and edge-sets respectively, and Y is
the set of possible class labels (or types) for v ∈ V . Given a
training set TV ⊂ V with known class labels yv for all v ∈ TV ,
and (optionally) contextual feature vectors xv for v ∈ V , we
aim to infer the unknown class labels yu for all u ∈ (V−TV).
For subsequent discussions, we use A ∈ {0, 1}|V|×|V| for the
adjacency matrix with self-loops removed, y ∈ Y |V| as the
ground-truth class label vector for all nodes, and X ∈ R|V|×F
for the node feature matrix.
Definitions. We now introduce two key concepts for model-
ing the homophily level in the graph with respect to the class
labels: (1) homophily ratio, and (2) compatibility matrix.

Definition 1 (Homophily Ratio h). Let C ∈ R|Y|×|Y|
where Cij = |{(u, v) : (u, v) ∈ E ∧ yu = i ∧ yv = j}|,
D = diag({Cii : i = 1, . . . , |Y|}), and e ∈ R|V| be an all-
ones vector. The homophily ratio is defined as h = e>De

e>Ce
.

The homophily ratio h defined above is good for measuring
the overall homophily level in the graph. By definition, we
have h ∈ [0, 1]: graphs with h closer to 1 tend to have more
edges connecting nodes within the same class, or stronger
homophily; on the other hand, graphs with h closer to 0
have more edges connecting nodes in different classes, or a
stronger heterophily. However, the actual homophily level
is not necessarily uniform within all parts of the graph. One
common case is that the homophily level varies among differ-
ent pairs of classes, where it is more likely for nodes between
some pair of classes to connect than some other pairs. To
measure the variability of the homophily level, we define the
compatibility matrix H as follows:

Definition 2 (Compatibility Matrix H). Let Y ∈ R|V|×|Y|
where Yvj = 1 if yv = j, and Yvj = 0 otherwise. Then, the
compatibility matrix H is defined as:

H = (Y>AY)� (Y>AE) (1)

where � is Hadamard (element-wise) division and E is a
|V| × |V| all-ones matrix.

In node classification settings, compatibility matrix H
models the (empirical) probability of nodes belonging to
each pair of classes to connect. More generally, H can be
used to model any discrete attribute; in that case, Hij is the
probability that a node with attribute value i connects with
a node with value j. Modeling H in GNNs is beneficial for
heterophily settings, but calculating the exact H would re-
quire knowledge to the class labels of all nodes in the graph,
which violates the semi-supervised node classification set-
ting. Therefore, it is not possible to incorporate exact H into
graph neural networks. In the following sections, we propose
CPGNN, which is capable of learning H in an end-to-end
way based on a rough initial estimation.

https://github.com/GemsLab/CPGNN

2.2 Framework Design
The CPGNN framework consists of two stages: (S1) prior
belief estimation; and (S2) compatibility-guided propagation.
We visualize the CPGNN framework in Fig. 1.
(S1) Prior Belief Estimation The goal for the first step is
to estimate per node v ∈ V a prior belief bv ∈ R|Y| of its
class label yv ∈ Y from the node features X. This separate,
explicit prior belief estimation stage enables the use of any
off-the-shelf neural network classifier as the estimator, and
thus can accommodate different types of node features. In this
work, we consider the following models as the estimators:
• MLP, a graph-agnostic multi-layer perceptron. Specifically,

the k-th layer of the MLP can be formulated as following:
R(k) = σ(R(k−1)W(k)), (2)

where W(k) are learnable parameters, and R(0) = X. We
call our method with MLP-based estimator CPGNN-MLP.

• GCN-Cheby (Defferrard, Bresson, and Vandergheynst
2016). We instantiate the model using a 2nd-order Cheby-
shev polynomial, where the k-th layer is parameterized as:

R(k) = σ
(∑2

i=0 Ti(L̃)R(k−1)W
(k)
i

)
. (3)

W
(k)
i are learnable parameters, R(0) = X, and Ti(L̃) is

the i-th order of the Chebyshev polynomial of L̃ = L− I
defined recursively as:

Ti(L̃) = 2L̃Ti−1(L̃)− Ti−2(L̃)

with T0(L̃) = I and T1(L̃) = L̃ = −D−
1
2 AD−

1
2 . We

refer to our Cheby-based method as CPGNN-Cheby.
We note that the performance of CPGNN is affected by the
choice of the estimator. It is important to choose an estimator
that is not constrained by the homophily assumption (e.g.,
our above-mentioned choices), so that it does not hinder the
performance in heterophilous graphs.

Denote the output of the final layer of the estimator as
R(K), then the prior belief Bp of nodes can be given as

Bp = softmax(R(K)) (4)
To facilitate subsequent discussions, we denote the trainable
parameters of a general prior belief estimator as Θp, and the
prior belief of node v derived by the estimator as Bp(v; Θp).
(S2) Compatibility-guided Propagation We propagate the
prior beliefs of nodes within their neighborhoods using a
parameterized, end-to-end trainable compatibility matrix H̄.

To propagate the belief vectors through linear formulations,
following Gatterbauer et al. (2015), we first center Bp with

B̄(0) = Bp − 1
|Y| (5)

We parameterize the compatibility matrix as H̄ to replace the
weight matrix W in traditional GNN models as the end-to-
end trainable parameter. We formulate each layer as:

B̄(k) = B̄(0) + AB̄(k−1)H̄ (6)
Each layer propagates and updates the current belief per node
in its neighborhood. After K layers, we have the final belief

Bf = softmax(B̄(K)). (7)
We similarly denote Bf (v; H̄,Θp) as the final belief for node
v, where parameters Θp are from the prior belief estimator.

2.3 Training Procedure
Pretraining of Prior Belief Estimator. We pretrain the
prior belief estimator for β1 iterations so that H̄ can then be
better initialized with informative prior beliefs. Specifically,
the pretraining process aims to minimize the loss function

Lp(Θp) =
∑
v∈TV

H (Bp(v; Θp), yv) + λp‖Θp‖2, (8)

whereH corresponds to the cross entropy, and λp is the L2
regularization weight for the prior belief estimator. Through
an ablation study (App. §D, Fig. 5), we show that pretraining
prior belief estimator helps increase the final performance.
Initialization and Regularization of H̄. We empirically
found that initializing the parameters H̄ with an estimation
of the unknown compatibility matrix H can lead to better
performance (cf. §4.4, Fig. 4a). We derive the estimation
using node labels in the training set TV , and prior belief
Bp estimated in Eq. (4) after the pretraining stage. More
specifically, denote the training mask matrix M as:

[M]i,: =

{
1, if i ∈ TV
0, otherwise (9)

and the enhanced belief matrix B̃, which makes use of known
node labels Ytrain = M ◦Y in the training set TV , as

B̃ = Ytrain + (1−M) ◦Bp (10)

where ◦ is the element-wise product. The estimation Ĥ of
the unknown compatibility matrix H is derived as

Ĥ = Sinkhorn-Knopp
(
Y>trainAB̃

)
(11)

where the use of the Sinkhorn and Knopp (1967) algorithm is
to ensure that Ĥ is doubly stochastic. We find that a doubly-
stochastic and symmetric initial value for H̄ boosts the train-
ing when using multiple propagation layers. Thus, we initial-
ize the parameter H̄ as H̄0 = 1

2 (Ĥ + Ĥ>)− 1
|Y| , where Ĥ

is centered around 0 (similar to Bp). To ensure the rows of
H̄ remain centered around 0 throughout the training process,
we adopt the following regularization term Φ(H̄) for H̄:

Φ(H̄) =
∑
i

∣∣∣∑j H̄ij

∣∣∣ (12)

Loss Function for CPGNN Training. Putting everything
together, we obtain the loss function for training CPGNN:

Lf (H̄,Θp) =
∑
v∈TV

H
(
Bf (v; H̄,Θp), yv

)
+ ηLp(Θp) + Φ(H̄)

(13)
The loss function consists of three parts: (1) the cross entropy
loss from the CPGNN output; (2) the co-training loss from
the prior belief estimator; and (3) a regularization term that
keeps H̄ centered around 0 throughout the training process.
The latter two terms are novel for the CPGNN formulation,
and help increase the performance of CPGNN, as we show
later through an ablation study (§4.4). Intuitively, our separate
co-training term for the prior belief estimator measures the
distance of prior beliefs to the ground-truth distribution for
nodes in the training set while also optimizing the final beliefs.
In other words, the second term helps keep the accuracy of
the prior beliefs throughout the training process.

2.4 Interpretation of Parameters H̄

Unlike the hard-to-interpret weight matrix W in classic
GNNs, parameter H̄ in CPGNN can be easily understood:
it captures the probability that node pairs in specific classes
connect with each other. Through an inverse of the initializa-
tion process, we can obtain an estimation of the compatibility
matrix Ĥ after training from learned parameter H̄ as follows:

Ĥ = Sinkhorn-Knopp(1
α

H̄ + 1
|Y|) (14)

where α = min{a ≥ 1 : 1 ≥ 1
aH̄ + 1

|Y| ≥ 0} is a recalibra-

tion factor ensuring that the obtained Ĥ is a valid stochastic
matrix. In §4.5, we provide an example of the estimated Ĥ
after training, and show the improvements in estimation error
compared to the initial estimation by Eq. (11).

3 Theoretical Analysis
Theoretical Connections. Theorem 1 establishes the the-
oretical result that CPGNN can be reduced to a simplified
version of GCN when H = I. Intuitively, replacing H with
I indicates a pure homophily assumption, and thus shows
exactly the reason that GCN-based methods have a strong
homophily assumption built-in, and therefore perform worse
for graphs without strong homophily.
Theorem 1. The forward pass formulation of a 1-layer
SGC (Wu et al. 2019), a simplified version of GCN with-
out the non-linearities and adjacency matrix normalization,

Bf = softmax ((A + I) XΘ) (15)

where Θ denotes the model parameter, can be treated as a
special case of CPGNN with compatibility matrix H fixed as
I and non-linearity removed in the prior belief estimator.

Proof The formulation of CPGNN with 1 aggregation layer
can be written as follows:

Bf = softmax(B̄(1)) = softmax
(
B̄(0) + AB̄(0)H

)
(16)

Now consider a 1-layer MLP (Eq. (2)) as the prior belief
estimator. Since we assumed that the non-linearity is removed
in the prior belief estimator, we can assume that Bp is already
centered. Therefore, we have

B̄(0) = Bp = R(K) = R(0)W(0) = XW(0) (17)

where W(0) is the trainable parameter for MLP. Plug in Eq.
(17) into Eq. (16), we have

Bf = softmax
(
XW(0) + AXW(0)H

)
(18)

Fixing compatibility matrix H fixed as I, and we have

Bf = softmax
(

(A + I)XW(0)
)

(19)

As W(0) is a trainable parameter equivalent to Θ in Eq. (15),
the notation is interchangeable. Thus, the simplified GCN
formulation as in Eq. (15) can be reduced to a special case of
CPGNN with compatibility matrix H = I. �

Time and Space Complexity of CPGNN Let |E| and |V|
denote the number of edges and nodes in G, respectively.

Further, let |Ei| denote the number of node pairs in G within
i-hop distance (e.g., |E1| = |E|) and |Y| denotes the number
of unique class labels. We assume the graph adjacency matrix
A and node feature matrix X are stored as sparse matrices.

CPGNN only introduces O(|E||Y|2) extra time over the
selected prior belief estimator in the propagation stage (S2).
Therefore, the overall complexity for CPGNN is largely de-
termined by the time complexity of the selected prior be-
lief estimator: when using MLP as prior belief estimator
(Stage S1), the overall time complexity of CPGNN-MLP is
O(|E||Y|2 + |V||Y|+ nnz(X)), while the overall time com-
plexity of an α-order CPGNN-Cheby is O(|E||Y|2+ |V||Y|+
nnz(X)+|Eα−1|dmax+|Eα|), where dmax is the max degree
of a node in G and nnz(X) is the number of nonzeros in X.

The overall space complexity of CPGNN is O(|E| +
|V||Y|+ |Y|2 + nnz(X)), which also takes into account the
space complexity for the two discussed prior belief estimators
above (MLP and GCN-Cheby).

4 Experiments
We design experiments to investigate the effectiveness of
the proposed framework for node classification with and
without contextual features using both synthetic and real-
world graphs with heterophily and strong homophily.

4.1 Methods and Datasets

Methods. We test the two formulations discussed in §2.2:
CPGNN-MLP and CPGNN-Cheby. Each formulation is
tested with either 1 or 2 aggregation layers, leading to 4
variants in total. We compared our methods with the follow-
ing baselines, some of which are reported to be competitive
under heterophily (Zhu et al. 2020): GCN (Kipf and Welling
2017), GAT (Veličković et al. 2018), GCN-Cheby (Deffer-
rard, Bresson, and Vandergheynst 2016; Kipf and Welling
2017), GraphSAGE (Hamilton, Ying, and Leskovec 2017),
MixHop (Abu-El-Haija et al. 2019), and H2GCN (Zhu et al.
2020). We also consider MLP as a graph-agnostic baseline.
We provide hardware and software specifications and details
on hyperparameter tuning in App. B and C.
Datasets. We investigate CPGNN using both synthetic and
real-world graphs. For synthetic benchmarks, we generate
graphs and node labels following an approach similar to
Karimi et al. (2017) and Abu-El-Haija et al. (2019), which
expands the Barabási-Albert model with configurable class
compatibility settings. We assign to the nodes feature vectors
from the recently announced Open Graph Benchmark (Hu

Table 1: Statistics for our synthetic and real graphs.

Dataset #Nodes #Edges #Classes #Features Homophily
|V| |E| |Y| F h

syn- 10,000 59,640– 10 100 [0, 0.1,
products 59,648 . . . , 1]

Texas 183 295 5 1703 0.11
Squirrel 5,201 198,493 5 2,089 0.22
Chameleon 2,277 31,421 5 2,325 0.23
CiteSeer 3,327 4,676 7 3,703 0.74
Pubmed 19,717 44,327 3 500 0.8
Cora 2,708 5,278 6 1,433 0.81

0 0.2 0.4 0.6 0.8 1

0.4

0.5

0.6

0.7

0.8

0.9

1

CPGNN-MLP-1
CPGNN-MLP-2
CPGNN-Cheby-1
CPGNN-Cheby-2

GraphSAGE
GCN-Cheby
GCN
MLP

h

Te
st

 A
cc

ur
ac

y

Figure 2: Mean classification accuracy of CPGNN and base-
lines on synthetic benchmark syn-products (cf. Table
A.1 for detailed results).

et al. 2020), which includes only graphs with homophily.
We detail the algorithms for generating synthetic bench-
marks in App. A. For real-world graph data, we consider
graphs with heterophily and homophily. We use 3 heterophily
graphs, namely Texas, Squirrel and Chameleon (Rozember-
czki, Allen, and Sarkar 2019), and 3 widely adopted graphs
with strong homophily, which are Cora, Pubmed and Cite-
seer (Sen et al. 2008; Namata et al. 2012). We use the features
and class labels provided by Pei et al. (2020).

4.2 Node Classification with Contextual Features

Experimental Setup. For synthetic experiments, we gen-
erate 3 synthetic graphs for every heterophily level h ∈
{0, 0.1, 0.2, . . . , 0.9, 1}. We then randomly select 10% of
nodes in each class for training, 10% for validation, and 80%
for testing, and report the average classification accuracy as
performance of each model on all instances with the same
level of heterophily. Using synthetic graphs for evaluation
enables us to better understand how the model performance
changes as a function of the level of heterophily in the graph.
Hence, we vary the level of heterophily in the graph going
from strong heterophily all the way to strong homophily
while holding other factors constant such as degree distri-
bution and differences in contextual features. On real-world
graphs, we generate 10 random splits for training, valida-
tion and test sets; for each split we randomly select 10% of
nodes in each class to form the training set, with another
10% for the validation set and the remaining as the test set.
Notice that we are using a significantly smaller fraction of
training samples compared to previous works that address
heterophily (Pei et al. 2020; Zhu et al. 2020). This is a more
realistic assumption in many real-world applications.
Synthetic Benchmarks. We compare the performance of
CPGNN to the state-of-the-art methods in Fig. 2. Notably,
we observe that CPGNN-Cheby-1 consistently outperforms
the baseline methods across the full spectrum of low to high
homophily (or high to low heterophily). Furthermore, com-
pared to our CPGNN variants, it performs the best in all
settings with h ≥ 0.3. For h < 0.3, CPGNN-MLP-1 out-
performs it, and in fact performs the best overall for graphs
with strong heterophily. More importantly, CPGNN has a
significant performance improvement over the baseline meth-
ods. In particular, by incorporating and learning the class

compatibility matrix H in an end-to-end fashion, we find that
CPGNN-Cheby-1 achieves a gain of up to 7% compared to
GCN-Cheby in heterophily settings, while CPGNN-MLP-1
performs up to 30% better in heterophily and 50% better in
homophily compared to the graph-agnostic MLP model.
Real-World Graphs with Heterophily. Results for graphs
with heterophily are presented in Table 2. Overall, we observe
that the top-3 methods in mean accuracy across all the graphs
are all based on CPGNN, which demonstrates the importance
of incorporating and learning the compatibility matrix H into
GNNs. Notably, CPGNN-Cheby-1 performs the best over-
all and significantly outperforms the other baseline methods,
achieving improvements between 1.68% and 10.64% in mean
accuracy compared to GNN baselines. These results demon-
strate the effectiveness of CPGNN in heterophily settings on
real-world benchmarks. We note that our empirical analysis
also confirms the small time complexity overhead of CPGNN:
on the Squirrel dataset, the runtimes of CPGNN-MLP-1 and
CPGNN-Cheby-1 are 39s and 697s, respectively, while the
prior belief estimators, MLP and GCN-Cheby, run in 29s and
592s in our implementation.
Real-World Graphs with Homophily. For the real-world
graphs with homophily, we report the results for each method
in Table 3. Recall that our framework generalizes GNN for
both homophily and heterophily. We find in Table 3, the
methods from the proposed framework perform better or
comparable to the baselines, including those which have
an implicit assumption of strong homophily. Therefore, our
methods are more universal while able to maintain the same
level of performance as those that are optimized under a
strict homophily assumption. As an aside, we observe that
CPGNN-Cheby-1 is the best performing method on Pubmed.
Summary. For the common settings of semi-supervised node
classification with contextual features available, the above
results show that CPGNN variants have the best performance
in heterophily settings while maintaining comparable per-
formance in the homophily settings. Considering both the
heterophily and homophily settings, CPGNN-Cheby-1 is the
best method overall, which ranked first in the heterophily
settings and second in homophily settings.

4.3 Node Classification without Features
Most previous work on semi-supervised node classification
have focused only on graphs that have contextual features
on the nodes. However, the vast majority of graph data does
not have such node-level features (Rossi and Ahmed 2015),
which greatly limits the utility of the methods proposed in
prior work that assume such features are available. Therefore,
we conduct extensive experiments on semi-supervised node
classification without contextual features using the same real-
world graphs as before.
Experimental Setup. To investigate the performance of
CPGNN and baselines when contextual feature vectors are
not available for nodes in the graph, we follow the approach
as Kipf and Welling (2017) by replacing the node features X
in each benchmark with an identity matrix I. We use the train-
ing, validation and test splits provided by Pei et al. (2020).

Table 2: Accuracy on heterophily graphs with features.

Texas Squirrel Chameleon Mean
Hom. ratio h 0.11 0.22 0.23 Acc

CPGNN-MLP-1 63.75±4.74 32.70±1.90 51.08±2.29 49.18
CPGNN-MLP-2 70.42±2.97 26.64±1.23 55.46±1.42 50.84
CPGNN-Cheby-1 63.13±5.72 37.03±1.23 53.90±2.61 51.35
CPGNN-Cheby-2 65.97±8.78 27.92±1.53 56.93±2.03 50.27

H2GCN 71.39±2.57 29.50±0.77 48.12±1.96 49.67
GraphSAGE 67.36±3.05 34.35±1.09 45.45±1.97 49.05
GCN-Cheby 58.96±3.04 26.52±0.92 36.66±1.84 40.71
MixHop 62.15±2.48 36.42±3.43 46.84±3.47 48.47
GCN 55.90±2.05 33.31±0.89 52.00±2.30 47.07
GAT 55.83±0.67 31.20±2.57 50.54±1.97 45.86
MLP 64.65±3.06 25.50±0.87 37.36±2.05 42.50

Table 3: Accuracy on homophily graphs with features.

Citeseer Pubmed Cora Mean
Hom. ratio h 0.74 0.8 0.81 Acc

CPGNN-MLP-1 71.30±1.11 86.40±0.36 77.40±1.10 78.37
CPGNN-MLP-2 71.48±1.85 85.31±0.70 81.24±1.26 79.34
CPGNN-Cheby-1 72.04±0.53 86.68±0.20 83.64±1.31 80.79
CPGNN-Cheby-2 72.06±0.51 86.66±0.24 81.62±0.97 80.11

H2GCN 71.76±0.64 85.93±0.40 83.43±0.95 80.37
GraphSAGE 71.74±0.66 85.66±0.53 81.60±1.16 79.67
GCN-Cheby 72.04±0.58 86.43±0.31 83.29±1.20 80.58
MixHop 73.23±0.60 85.12±0.29 85.34±1.23 81.23
GCN 72.27±0.52 86.42±0.27 83.56±1.21 80.75
GAT 72.63±0.87 84.48±0.22 79.57±2.12 78.89
MLP 66.52±0.99 84.70±0.33 64.81±1.20 72.01

Heterophily. We report results on graphs with strong het-
erophily under the featureless settings in Table 4. We observe
that the best performing methods for each dataset are all
CPGNN variants. From the mean accuracy perspective, all
CPGNN variants outperform all baselines except H2GCN,
which is also proposed to handle heterophily, in the overall
performance; CPGNN-MLP-1 has the best overall perfor-
mance, followed by CPGNN-Cheby-1. It is also worth noting
that the performance of GCN-Cheby and MLP, upon which
our prior belief estimator is based on, are significantly worse
than other methods. This demonstrates the effectiveness of in-
corporating the class compatibility matrix H in GNN models
and learning it in an end-to-end fashion.
Homophily. We report the results in Table 5. The featureless
setting for graphs with strong homophily is a fundamentally
easier task compared to graphs with strong heterophily, espe-
cially for methods with implicit homophily assumptions, as
they tend to yield highly similar prediction within the prox-
imity of each node. Despite this, the CPGNN variants still
perform comparably to the state-of-the-art methods.
Summary. Under the featureless settings, the above results
show that CPGNN variants achieve state-of-the-art perfor-
mance in heterophily settings, while achieving comparable
performance in the homophily settings. Considering both
the heterophily and homophily settings, CPGNN-Cheby-1 is
again the best method overall.

4.4 Ablation Study
To evaluate the effectiveness of our model design, we conduct
an ablation study by examining variants of CPGNN-MLP-1
with one design element removed at a time. Fig. 4 presents
the results for the ablation study, with more detailed results
presents in Table A.2 in Appendix. We also discussed the

Table 4: Accuracy on heterophily graphs without features.

Texas Squirrel Chameleon Mean
Hom. ratio h 0.11 0.22 0.23 Acc

CPGNN-MLP-1 64.05±7.65 55.19±1.88 68.38±3.48 62.54
CPGNN-MLP-2 65.14±9.99 36.37±2.08 70.18±2.64 57.23
CPGNN-Cheby-1 63.78±7.67 54.76±2.01 67.19±2.18 61.91
CPGNN-Cheby-2 70.27±8.26 26.42±1.20 68.25±1.57 54.98

H2GCN 68.38±6.98 50.91±1.71 62.41±2.14 60.57
GraphSAGE 67.03±4.90 36.90±2.36 58.53±2.20 54.15
GCN-Cheby 50.00±8.08 12.62±0.73 14.93±1.53 25.85
MixHop 57.57±5.56 33.54±2.08 50.15±2.78 47.08
GCN 51.08±7.48 43.78±1.39 62.04±2.17 52.30
GAT 57.03±4.31 42.46±2.08 60.31±2.61 53.26
MLP 44.86±9.29 19.77±0.80 20.57±2.29 28.40

Table 5: Accuracy on homophily graphs without features.

Citeseer Pubmed Cora Mean
Hom. ratio h 0.74 0.8 0.81 Acc

CPGNN-MLP-1 65.70±2.96 81.98±0.36 81.97±1.24 76.55
CPGNN-MLP-2 67.66±2.29 82.33±0.39 82.37±1.70 77.46
CPGNN-Cheby-1 67.93±2.86 82.44±0.58 83.76±1.81 78.04
CPGNN-Cheby-2 67.39±2.69 82.27±0.54 83.02±1.29 77.56

H2GCN 68.37±2.93 82.97±0.37 83.22±1.56 78.19
GraphSAGE 66.71±3.27 77.86±3.84 81.77±2.00 75.45
GCN-Cheby 67.56±3.24 79.14±0.38 83.66±1.02 76.79
MixHop 68.38±3.06 82.72±0.75 84.73±1.80 78.61
GCN 67.14±3.15 82.28±0.50 83.34±1.38 77.59
GAT 68.64±3.27 81.92±0.33 81.79±2.21 77.45
MLP 19.78±1.35 39.58±0.69 21.61±1.92 26.99

effectiveness of co-training and pretraining in Appendix §D.
Initialization and Regularization of H̄. Here we study 2
variants of CPGNN-MLP-1: (1) No H̄ initialization, when
H̄ is initialized using glorot initialization (similar to other
GNN formulations) instead of our initialization process de-
scribed in § 2.3. (2) No H̄ regularization, where we remove
the regularization term Φ(H̄) as defined in Eq. (12) from
the overall loss function (Eq. (13)). In Fig. 4a, we see that
replacing the initializer can lead to up to 30% performance
drop for the model, while removing the regularization term
can cause up to 6% decrease in performance. These results
support our claim that initializing H̄ using pretrained prior
beliefs and known labels in the training set and regularizing
the H̄ around 0 lead to better overall performance.
End-to-end Training of H̄. To demonstrate the performance
gain through end-to-end training of CPGNN after the initial-
ization of H̄, we compare the final performance of CPGNN-
MLP-1 with the performance after H̄ is initialized; Fig. 4b
shows the results. From the results, we see that the end-to-
end training process of CPGNN has contributed up to 21%
performance gain. We believe such performance gain is due
to a more accurate H̄ learned through the training process, as
demonstrated in the next subsection.

4.5 compatibility matrix Estimation
As described in §2.4, we can obtain an estimation Ĥ of
the class compatiblity matrix H ∈ [0, 1]|Y|×|Y| through the
learned parameter H̄. To measure the accuracy of the estima-
tion Ĥ, we calculate the average error of each element for

the estimated Ĥ as following: δ̄H =
|Ĥ−H|
|Y|2 .

Fig. 3 shows an example of the obtained estimation Ĥ on
the synthetic benchmark syn-products with homophily

0 2 4 6 8
0

2

4

6

8

0 2 4 6 8 0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25

Ground Truth Initial Estimation Final Estimation

(a) Heterophily matrices H for empirical (ground truth), initial and final estimation.

0 400 800 1200 1600

0.02

0.03

0.04

Training Epochs

A
vg

 E
rr

or

(b) Error of compatibility matrix estimation
Ĥ throughout training process.

Figure 3: Heterophily matrices H and estimation error of H for a h = 0 instance of syn-products dataset.

0 0.2 0.4 0.6 0.8 1
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

CPGNN-MLP-1

No H̅ Init.
No H̅ Reg.

h

Te
st

 A
cc

ur
ac

y

(a) Accuracy without initializa-
tion or regularization of H̄.

0 0.2 0.4 0.6 0.8 1
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

CPGNN-MLP-1

After H̅ Init.

h

Te
st

 A
cc

ur
ac

y

(b) Accuracy after end-to-end
training vs. after initializing H̄.

Figure 4: Ablation Study: Mean accuracy as a function of h.
(a): When replacing H̄ initialization with glorot or removing
H̄ regularization, the performance of CPGNN drops signif-
icantly; (b): The significant increase in performance shows
the effectiveness of the end-to-end training in our framework.

ratio h = 0 using heatmaps, along with the initial estimation
derived following §2.3 which CPGNN optimizes upon, and
the ground truth empirical compatibility matrix as defined
in Def. 2. From the heatmap, we can visually observe the
improvement of the final estimation upon the initial estima-
tion. The curve of the estimation error with respect to the
number of training epochs also shows that the estimation er-
ror decreases throughout the training process, supporting the
observations through the heatmaps. These results illustrate
the interpretability of parameters H̄, and effectiveness of our
modeling of compatibility matrix.

5 Related Work
SSL before GNNs. The problem of semi-supervised learning
(SSL) or collective classification (Sen et al. 2008; McDow-
ell, Gupta, and Aha 2007; Rossi et al. 2012) can be solved
with iterative methods (J. Neville 2000; Lu and Getoor 2003),
graph-based regularization and probabilistic graphical mod-
els (London and Getoor 2014). Among these methods, our
approach is related to belief propagation (BP) (Yedidia, Free-
man, and Weiss 2003; Rossi et al. 2018), a message-passing
approach where each node iteratively sends its neighboring
nodes estimations of their beliefs based on its current belief,
and updates its own belief based on the estimations received
from its neighborhood. Koutra et al. (2011) and Gatterbauer
et al. (2015) have proposed linearized versions which are
faster to compute. However, these approaches require the
class-compatibility matrix to be determined before the infer-
ence stage, and cannot support end-to-end training.
GNNs. In recent years, graph neural networks (GNNs)
have become increasingly popular for graph-based semi-

supervised node classification problems thanks to their ability
to learn through end-to-end training. Defferrard, Bresson, and
Vandergheynst (2016) proposed an early version of GNN by
generalizing convolutional neural networks (CNNs) from
regular grids (e.g., images) to irregular grids (e.g., graphs).
Kipf and Welling (2017) introduced GCN, a popular GNN
model which simplifies the previous work. Other GNN mod-
els that have gained wide attention include Planetoid (Yang,
Cohen, and Salakhudinov 2016) and GraphSAGE (Hamil-
ton, Ying, and Leskovec 2017). More recent works have
looked into designs which strengthen the effectiveness of
GNN to capture graph information: GAT (Veličković et al.
2018) and AGNN (Thekumparampil et al. 2018) introduced
an edge-level attention mechanism; MixHop (Abu-El-Haija
et al. 2019) and Geom-GCN (Pei et al. 2020) designed ag-
gregation schemes which go beyond the immediate neigh-
borhood of each node; the jumping knowledge network (Xu
et al. 2018) leverages representations from intermediate lay-
ers; GAM (Stretcu et al. 2019) and GMNN (Qu, Bengio, and
Tang 2019) use a separate model to capture the agreement
or joint distribution of labels in the graph. To capture more
graph information, recent works trained very deep networks
with 100+ layers (Li et al. 2019, 2020; Rong et al. 2020).

Although many of these GNN methods work well when
the data exhibits strong homophily, none of these methods
(except Geom-GCN) was proposed to address the challeng-
ing and largely overlooked setting of heterophily, and many
of them perform poorly in this setting. Recently, Zhu et al.
(2020) discussed effective designs which improve the repre-
sentation power of GNNs under heterophily through theo-
retical and empirical analysis. Going beyond these designs
that prior GNN works have leveraged, we propose a new
GNN framework that elegantly combines the powerful no-
tion of compatibility matrix H from belief propagation with
end-to-end training.

6 Conclusion

We propose CPGNN, an approach that models an inter-
pretable class compatibility matrix into the GNN framework,
and conduct extensive empirical analysis under more real-
istic settings with fewer training samples and a featureless
setup. Through theoretical and empirical analysis, we have
shown that the proposed model overcomes the limitations of
existing GNN models, especially in the complex settings of
heterophily graphs without contextual features.

Acknowledgments
We would like to thank Mark Heimann, Yujun Yan and Le-
man Akoglu for engaging discussions during the early stage
of this work, and the reviewers for their constructive feedback.
This material is based upon work supported by the National
Science Foundation under CAREER Grant No. IIS 1845491,
Army Young Investigator Award No. W911NF1810397, an
Adobe Digital Experience research faculty award, an Amazon
faculty award, a Google faculty award, and AWS Cloud Cred-
its for Research. We gratefully acknowledge the support of
NVIDIA Corporation with the donation of the Quadro P6000
GPU used for this research. Any opinions, findings, and con-
clusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views
of the National Science Foundation or other funding parties.

References
Abu-El-Haija, S.; Perozzi, B.; Kapoor, A.; Harutyunyan, H.;
Alipourfard, N.; Lerman, K.; Steeg, G. V.; and Galstyan, A.
2019. MixHop: Higher-Order Graph Convolution Architec-
tures via Sparsified Neighborhood Mixing. In International
Conference on Machine Learning (ICML).

Ahmed, N. K.; Rossi, R.; Lee, J. B.; Willke, T. L.; Zhou,
R.; Kong, X.; and Eldardiry, H. 2018. Learning Role-based
Graph Embeddings. In IJCAI.

Barabasi, A. L.; and Albert, R. 1999. Emergence of scaling
in random networks. Science 286(5439): 509–512.

Defferrard, M.; Bresson, X.; and Vandergheynst, P. 2016.
Convolutional neural networks on graphs with fast localized
spectral filtering. In Advances in neural information process-
ing systems, 3844–3852.

Dou, Y.; Liu, Z.; Sun, L.; Deng, Y.; Peng, H.; and Yu, P. S.
2020. Enhancing graph neural network-based fraud detectors
against camouflaged fraudsters. In Proceedings of the 29th
ACM International Conference on Information & Knowledge
Management, 315–324.

Fout, A.; Byrd, J.; Shariat, B.; and Ben-Hur, A. 2017. Protein
interface prediction using graph convolutional networks. In
Advances in neural information processing systems, 6530–
6539.

Gatterbauer, W.; Günnemann, S.; Koutra, D.; and Falout-
sos, C. 2015. Linearized and single-pass belief propagation.
Proceedings of the VLDB Endowment 8(5): 581–592.

Hamilton, W. L.; Ying, R.; and Leskovec, J. 2017. Inductive
Representation Learning on Large Graphs. In NIPS.

Hu, W.; Fey, M.; Zitnik, M.; Dong, Y.; Ren, H.; Liu, B.;
Catasta, M.; and Leskovec, J. 2020. Open Graph Benchmark:
Datasets for Machine Learning on Graphs. arXiv preprint
arXiv:2005.00687 .

J. Neville, D. J. 2000. Iterative classification in relational
data. In In Proc. AAAI, 13–20. AAAI Press.

Karimi, F.; Génois, M.; Wagner, C.; Singer, P.; and
Strohmaier, M. 2017. Visibility of minorities in social net-
works. arXiv preprint arXiv:1702.00150 .

Kipf, T. N.; and Welling, M. 2017. Semi-Supervised Classifi-
cation with Graph Convolutional Networks. In International
Conference on Learning Representations (ICLR).
Koutra, D.; Ke, T.-Y.; Kang, U.; Chau, D. H. P.; Pao, H.-
K. K.; and Faloutsos, C. 2011. Unifying guilt-by-association
approaches: Theorems and fast algorithms. In Joint European
Conference on Machine Learning and Knowledge Discovery
in Databases, 245–260. Springer.
Li, G.; Müller, M.; Thabet, A.; and Ghanem, B. 2019. Deep-
GCNs: Can GCNs Go as Deep as CNNs? In The IEEE
International Conference on Computer Vision (ICCV).
Li, G.; Xiong, C.; Thabet, A.; and Ghanem, B. 2020. Deep-
ergcn: All you need to train deeper gcns. arXiv preprint
arXiv:2006.07739 .
London, B.; and Getoor, L. 2014. Collective Classification
of Network Data. Data Classification: Algorithms and Appli-
cations 399.
Lu, Q.; and Getoor, L. 2003. Link-Based Classification.
In Proceedings of the Twentieth International Conference
on International Conference on Machine Learning (ICML),
496–503. AAAI Press.
McDowell, L. K.; Gupta, K. M.; and Aha, D. W. 2007. Cau-
tious inference in collective classification. In AAAI, volume 7,
596–601.
McPherson, M.; Smith-Lovin, L.; and Cook, J. M. 2001.
Birds of a feather: Homophily in social networks. Annual
review of sociology 27(1): 415–444.
Namata, G.; London, B.; Getoor, L.; and Huang, B. 2012.
Query-driven active surveying for collective classification. In
10th International Workshop on Mining and Learning with
Graphs, volume 8.
Pandit, S.; Chau, D. H.; Wang, S.; and Faloutsos, C. 2007.
Netprobe: a fast and scalable system for fraud detection in
online auction networks. In Proceedings of the 16th interna-
tional conference on World Wide Web, 201–210.
Pei, H.; Wei, B.; Chang, K. C.-C.; Lei, Y.; and Yang, B. 2020.
Geom-GCN: Geometric Graph Convolutional Networks. In
International Conference on Learning Representations.
Qu, M.; Bengio, Y.; and Tang, J. 2019. GMNN: Graph
Markov Neural Networks. In International Conference on
Machine Learning, 5241–5250.
Rong, Y.; Huang, W.; Xu, T.; and Huang, J. 2020. DropEdge:
Towards Deep Graph Convolutional Networks on Node Clas-
sification. In International Conference on Learning Represen-
tations. URL https://openreview.net/forum?id=Hkx1qkrKPr.
Rossi, R. A.; and Ahmed, N. K. 2015. The network data
repository with interactive graph analytics and visualization.
In Proceedings of the Twenty-Ninth AAAI Conference on Arti-
ficial Intelligence, 4292–4293. URL http://networkrepository.
com.
Rossi, R. A.; Jin, D.; Kim, S.; Ahmed, N. K.; Koutra, D.;
and Lee, J. B. 2020. On Proximity and Structural Role-based
Embeddings in Networks: Misconceptions, Techniques, and
Applications. In Transactions on Knowledge Discovery from
Data (TKDD), 36.

https://openreview.net/forum?id=Hkx1qkrKPr
http://networkrepository.com
http://networkrepository.com

Rossi, R. A.; McDowell, L. K.; Aha, D. W.; and Neville, J.
2012. Transforming Graph Data for Statistical Relational
Learning. Journal of Artificial Intelligence Research (JAIR)
45: 363–441.

Rossi, R. A.; Zhou, R.; Ahmed, N. K.; and Eldardiry, H. 2018.
Relational Similarity Machines (RSM): A Similarity-based
Learning Framework for Graphs. In IEEE BigData, 10.

Rozemberczki, B.; Allen, C.; and Sarkar, R. 2019.
Multi-scale attributed node embedding. arXiv preprint
arXiv:1909.13021 .

Scarselli, F.; Gori, M.; Tsoi, A. C.; Hagenbuchner, M.; and
Monfardini, G. 2008. The graph neural network model. IEEE
Transactions on Neural Networks 20(1): 61–80.

Sen, P.; Namata, G.; Bilgic, M.; Getoor, L.; Galligher, B.;
and Eliassi-Rad, T. 2008. Collective classification in network
data. AI magazine 29(3): 93–93.

Sinkhorn, R.; and Knopp, P. 1967. Concerning nonnegative
matrices and doubly stochastic matrices. Pacific Journal of
Mathematics 21(2): 343–348.

Stretcu, O.; Viswanathan, K.; Movshovitz-Attias, D.; Pla-
tanios, E.; Ravi, S.; and Tomkins, A. 2019. Graph Agree-
ment Models for Semi-Supervised Learning. In Wallach,
H.; Larochelle, H.; Beygelzimer, A.; d’Alché Buc, F.; Fox,
E.; and Garnett, R., eds., Advances in Neural Information
Processing Systems 32, 8713–8723.

Thekumparampil, K. K.; Wang, C.; Oh, S.; and Li, L.-J. 2018.
Attention-based graph neural network for semi-supervised
learning. arXiv preprint arXiv:1803.03735 .

Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò,
P.; and Bengio, Y. 2018. Graph Attention Networks. In
International Conference on Learning Representations.

Wu, F.; Souza, A.; Zhang, T.; Fifty, C.; Yu, T.; and Wein-
berger, K. 2019. Simplifying Graph Convolutional Networks.
In International Conference on Machine Learning, 6861–
6871.

Xu, K.; Li, C.; Tian, Y.; Sonobe, T.; Kawarabayashi, K.;
and Jegelka, S. 2018. Representation Learning on Graphs
with Jumping Knowledge Networks. In Proceedings of the
35th International Conference on Machine Learning, ICML,
volume 80, 5449–5458. PMLR.

Yan, Y.; Zhu, J.; Duda, M.; Solarz, E.; Sripada, C.; and
Koutra, D. 2019. Groupinn: Grouping-based interpretable
neural network for classification of limited, noisy brain data.
In Proceedings of the 25th ACM SIGKDD International Con-
ference on Knowledge Discovery & Data Mining, 772–782.

Yang, Z.; Cohen, W.; and Salakhudinov, R. 2016. Revis-
iting semi-supervised learning with graph embeddings. In
International conference on machine learning, 40–48.

Yedidia, J. S.; Freeman, W. T.; and Weiss, Y. 2003. Under-
standing belief propagation and its generalizations. Exploring
artificial intelligence in the new millennium 8: 236–239.

Ying, R.; He, R.; Chen, K.; Eksombatchai, P.; Hamilton,
W. L.; and Leskovec, J. 2018. Graph convolutional neural

networks for web-scale recommender systems. In Proceed-
ings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 974–983.
Zhu, J.; Yan, Y.; Zhao, L.; Heimann, M.; Akoglu, L.; and
Koutra, D. 2020. Beyond Homophily in Graph Neural Net-
works: Current Limitations and Effective Designs. Advances
in Neural Information Processing Systems 33.
Zitnik, M.; Agrawal, M.; and Leskovec, J. 2018. Modeling
polypharmacy side effects with graph convolutional networks.
Bioinformatics 34(13): i457–i466.

Appendix
A Synthetic Graph Generation
We generate synthetic graphs in a way improved upon Abu-
El-Haija et al. (2019) by following a modified preferential
attachment process (Barabasi and Albert 1999), which allows
us to control the compatibility matrix H in generated graph
while keeping a power law degree distribution. We detail the
algorithm of synthetic graph generation in Algorithm 1.

For the synthetic graph syn-products used in our ex-
periments, we use ogbn-products (Hu et al. 2020) as
the reference graph Gr, with parameters C = 10, n0 = 70,
m = 6 and the total number of nodes as 10000; all 10 classes
share the same size of 1000. For the compatibility matrix,
we set the diagonal elements of H to be the same, which we
denote as h, and we follow the approach in Abu-El-Haija
et al. (2019) to set the off-diagonal elements.

B More Experimental Setups
Baseline Implementations. We use the official implemen-
tation released by the authors on GitHub for all baselines
besides MLP.
• GCN & GCN-Cheby (Kipf and Welling 2017): https://

github.com/tkipf/gcn
• GraphSAGE (Hamilton, Ying, and Leskovec 2017): https:

//github.com/williamleif/graphsage-simple (PyTorch im-
plementation)

• MixHop (Abu-El-Haija et al. 2019): https://github.com/
samihaija/mixhop

• GAT (Veličković et al. 2018): https://github.com/PetarV-
/GAT

• H2GCN (Zhu et al. 2020): https://github.com/GemsLab/
H2GCN

Hardware and Software Specifications. We run all ex-
periments on a workstation which features an AMD Ryzen
9 3900X CPU with 12 cores, 64GB RAM, a Nvidia Quadro
P6000 GPU with 24GB GPU Memory and a Ubuntu 20.04.1
LTS operating system. We implement CPGNN using Tensor-
Flow 2.2 with GPU support.

C Hyperparameter Tuning
Below we list the hyperparameters tested on each benchmark
per model on real-world graphs. As the hyperparameters de-
fined by each baseline model differ significantly, we list the
combinations of non-default command line arguments we
tested, without explaining them in detail. We refer the inter-
ested reader to the corresponding original implementations
for further details on the arguments, including their defini-
tions. When multiple hyperparameters are listed, the results
reported for each benchmark are based on the hyperparame-
ters which yield the best validation accuracy in average.

To ensure a fair evaluation of the performance improve-
ment brought by CPGNN, the MLP and GCN-Cheby prior
belief estimator in CPGNN-MLP and CPGNN-Cheby share
the same network architecture (including numbers and sizes
of hidden layers) as our MLP and GCN-Cheby baselines.

Algorithm 1: Synthetic Graph Generation
Input: C ∈ N: Number of classes in generated graph;

N ∈ NC : target size of each class;
n0 ∈ N: Number of nodes for the initial
bootstrapping graph, which should be much smaller
than the total number of nodes;
m ∈ N: Number of edges added with each new
node;
H ∈ [0, 1]C×C : Target compatibility matrix for
generated graph;
Gr = (Vr, Er): Reference graph with node set Vr
and edge set Er;
yr: mapping from each node v ∈ Vr to its class
label yr[v] in the reference graph Gr;
Xr: mapping from each node v ∈ Vr to its node
feature vector Xr[v] in the reference graph Gr;

Output: Generated synthetic graph G = (V, E), with
y : V → Y as mapping from each node v ∈ V to
its class label y[v], and X : V → RF as mapping
from v ∈ V to its node feature vector X[v].

begin
Initialize class label set Y ← {0, . . . , C − 1}, node set
V ← φ, edge set E ← φ;

Calculate the target number of nodes n in generated
graph by summing up all elements in N;

Generate node label vector y, such that class label
y ∈ Y appears exactly N[y] times in y, and shuffle y
randomly after generation;

for v ∈ {0, 1, . . . , n0 − 1} do
Add new node v with class label y[v] into the set of

nodes V;
If v 6= 0, add new edge (v − 1, v) into the set of

edges E ;

for v ∈ {n0, n0 + 1, . . . , n− 1} do
Initialize weight vector w← 0 and set T ← φ;
for u ∈ V do

w[u]← H[y[v],y[u]]× d[u], where d[u] is
the current degree of node u;

Normalize vector w such that ‖W‖1 = 1;
Randomly sample m nodes without replacement

from V with probabilities weighted by w, and add
the sampled nodes into set T ;

Add new node v with class label y[v] into the set of
nodes V;

for t ∈ T do
Add new edge (t, v) into the set of edges E ;

Find an valid injection Γ : V → Vr such that
∀u, v ∈ V,Γ(u) = Γ(v)⇒ u = v and
y[u] = y[v]⇔ yr[Γ(u)] = yr[Γ(v)];

for v ∈ V do
X[v]← Xr[Γ(v)];

• GraphSAGE (Hamilton, Ying, and Leskovec 2017):

– hid_units: 64
– lr: a ∈ {0.1, 0.7}
– epochs: 500

• GCN-Cheby (Kipf and Welling 2017):

– hidden1: 64

https://github.com/tkipf/gcn
https://github.com/tkipf/gcn
https://github.com/williamleif/graphsage-simple
https://github.com/williamleif/graphsage-simple
https://github.com/samihaija/mixhop
https://github.com/samihaija/mixhop
https://github.com/PetarV-/GAT
https://github.com/PetarV-/GAT
https://github.com/GemsLab/H2GCN
https://github.com/GemsLab/H2GCN

Table A.1: Node classification with features on synthetic graph (§4.2, Fig. 2): mean classification accuracy per method and
homophily ratio h on syn-products.

Methods Homophily ratio h

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

CPGNN-MLP-1 76.98±2.01 67.88±0.82 63.21±1.57 65.23±0.85 74.86±0.60 83.25±1.30 89.83±0.16 94.67±0.27 97.13±0.40 98.77±0.27 99.43±0.07

CPGNN-MLP-2 71.40±1.90 65.28±0.80 61.76±1.18 66.17±0.40 74.67±0.61 82.63±0.56 88.68±0.21 93.33±0.63 96.81±0.14 98.94±0.18 99.90±0.12

CPGNN-Cheby-1 76.37±0.33 66.38±0.39 63.01±0.68 67.39±0.94 77.57±0.39 86.86±1.40 94.44±0.24 98.16±0.16 99.60±0.06 99.89±0.13 100.00±0.00

CPGNN-Cheby-2 72.80±1.72 65.26±0.87 62.05±1.17 64.40±0.86 73.12±0.62 80.90±1.09 87.43±0.22 91.85±0.62 96.66±0.47 99.67±0.09 100.00±0.00

GraphSAGE 59.15±0.73 53.53±0.77 54.54±0.66 56.08±0.45 61.17±1.19 68.98±1.44 78.14±1.10 86.55±0.30 92.71±1.35 96.69±0.38 99.12±0.11

GCN-Cheby 68.65±1.30 60.51±1.64 61.98±0.68 66.20±1.24 74.43±1.40 83.60±0.77 92.28±0.47 97.11±0.18 99.25±0.09 99.81±0.06 99.80±0.18

MixHop 10.66±1.73 11.29±0.61 12.40±1.86 11.87±2.38 13.91±3.21 19.72±1.06 20.33±1.11 21.72±2.07 21.88±3.04 21.32±1.91 22.60±2.14

GCN 44.72±0.51 41.87±1.37 46.49±0.50 55.63±0.88 69.33±0.80 81.21±0.97 90.65±0.35 96.01±0.10 98.80±0.14 99.64±0.01 99.99±0.01

GAT 19.59±5.96 21.74±2.06 25.67±1.77 30.34±2.90 39.42±7.60 50.62±5.45 64.68±5.01 88.01±3.71 98.01±0.65 99.06±0.80 99.94±0.02

MLP 47.46±2.66 47.15±1.47 47.55±0.90 47.35±2.02 47.07±0.94 48.25±0.76 47.37±1.41 47.38±1.64 46.87±0.65 46.94±0.86 48.12±1.63

Table A.2: Ablation study of CPGNN-MLP-1 (§4.4 and App. §D): mean classification accuracy per method and homophily ratio
h on syn-products.

Variants Homophily ratio h

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

CPGNN-MLP-1 77.52±1.82 67.95±0.68 62.55±1.73 64.85±0.81 74.67±0.82 82.95±1.07 89.75±0.24 94.64±0.38 97.17±0.34 98.73±0.30 99.35±0.10

No H̄ Init. (Fig. 4a) 46.74±2.86 46.03±1.56 46.20±0.61 46.53±1.55 47.20±0.94 54.54±0.50 67.47±2.06 80.18±0.53 87.44±1.93 91.89±1.59 95.47±0.68

No H̄ Reg. (Fig. 4a) 71.49±2.01 61.88±1.37 58.98±0.64 60.43±1.82 68.91±1.35 78.55±1.14 85.47±1.99 91.76±0.49 95.48±0.59 97.31±0.03 98.82±0.19

After H̄ Init. (Fig. 4b) 56.49±4.48 52.22±2.70 51.02±1.08 53.05±2.25 57.58±1.99 62.95±1.51 68.31±1.88 72.18±1.90 77.53±1.56 82.13±1.11 88.38±1.77

No Cotrain (Fig. 5) 75.63±1.33 65.85±0.79 61.96±1.84 64.52±1.57 73.67±0.64 82.62±1.05 89.29±0.06 94.67±0.27 97.25±0.36 99.04±0.08 99.31±0.25

No Pretrain (Fig. 5) 75.67±2.65 65.45±0.47 60.23±0.68 64.15±0.97 73.59±0.79 82.83±0.52 88.92±0.60 94.81±0.79 97.36±0.09 98.97±0.18 99.52±0.08

– weight_decay: a ∈ {1e-5, 5e-4}
– max_degree: 2
– early_stopping: 40

• Mixhop (Abu-El-Haija et al. 2019):
– adj_pows: 0, 1, 2
– hidden_dims_csv: 64

• GCN (Kipf and Welling 2017):
– hidden1: 64
– early_stopping: a ∈ {40, 100, 200}
– epochs: 2000

• GAT (Veličković et al. 2018):
– hid_units: 8
– n_heads: 8

• H2GCN (Zhu et al. 2020):
– network_setup:
M64-T1-G-V-T2-G-V-C1-C2-D-MO
or M64-R-T1-G-V-T2-G-V-C1-C2-D-MO
(H2GCN-2 with or without ReLU)

– dropout: 0 or 0.5
– l2_regularize_weight: 1e-5

• MLP:
– Dimension of Feature Embedding: 64
– Number of hidden layer: 1
– Non-linearity Function: ReLU
– Dropout Rate: 0

D Detailed Results
Node Classification with Contextual Features. Table
A.1 provides the detailed results on syn-products, as
illustrated in Fig. 2 in §4.2.

0 0.2 0.4 0.6 0.8 1

0.6

0.7

0.8

0.9

1

CPGNN-MLP-1

No Cotrain
No Pretrain

h

Te
st

 A
cc

ur
ac

y

Figure 5: Ablation Study for co-training and pretraining:
Mean accuracy as a function of h. Co-training and pretraining
contribute up to 2% performance gain (cf. App. §D).

Ablation Study. Table A.2 presents more detailed results
for the ablation study (cf. §4.4), which complements Fig. 4.
In addition, we also conduct an ablation study to examine
the effectiveness of co-training and pretraining. We test a
variant where co-training is removed by setting η = 0 for
the co-training loss term ηLp(Θp) in Eq. (13). We also test
another variant where we skip the pretraining for prior belief
estimator. We refer to these 2 variants as “No Cotrain” and
“No Pretrain” respectively. Fig. 5 and Table A.2 reveal that,
though the differences in performance are small, the adoption
of co-training and pretraining has led to up to 2% increase
for the performance in heterophily settings.

	1 Introduction
	2 Framework
	2.1 Preliminaries
	2.2 Framework Design
	2.3 Training Procedure
	2.4 Interpretation of Parameters

	3 Theoretical Analysis
	4 Experiments
	4.1 Methods and Datasets
	4.2 Node Classification with Contextual Features
	4.3 Node Classification without Features
	4.4 Ablation Study
	4.5 compatibility matrix Estimation

	5 Related Work
	6 Conclusion
	A Synthetic Graph Generation
	B More Experimental Setups
	C Hyperparameter Tuning
	D Detailed Results

