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ABSTRACT
Mapping the human brain, or understanding how certain brain

regions relate to specific aspects of cognition, has been and remains

an active area of neuroscience research. Functional magnetic res-

onance imaging (fMRI) data—in the form of images, time series

or graphs—are central in this research, but pose many challenges

in phenotype prediction tasks (e.g., noisy, small training samples).

Standardly employed handcrafted models and newly proposed neu-

ral network methods pose limitations in the expressive power and

interpretability, respectively, in this context.

In this work focusing on fMRI-derived brain graphs, a modality

that partially handles some challenges of fMRI data, we propose

a grouping-based interpretable neural network model, GroupINN,

that effectively classifies cognitive performance with 85% fewer

model parameters than baseline deep models, while also identifying

the most predictive brain subnetworks within several task-specific

contexts. Our method incorporates the idea of node grouping into

the design of the neural network. That way, unlike other methods

that employ clustering as a preprocessing step to reorder nodes,

GroupINN learns the node grouping and extracts graph features

jointly. Experiments on task-based fMRI datasets show that our

method is 2.6− 69× faster than other deep models, while achieving

comparable or better accuracy and providing interpretability.
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1 INTRODUCTION
For decades, a main goal in the field of neuroscience has been to

understand how specific aspects of cognition and intelligence are

functionally encoded in the brain [9, 13, 24, 38]. Functional mag-

netic resonance imaging (fMRI), a non-invasive measure of neural
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Figure 1: From fMRI images1 to functional graphs [5]: first, fMRI
images are processed via correction, denoising, smoothing and par-
cellation to obtain spatially-averaged time series per region of in-
terest (ROI). Then, time series are further processed by computing
Pearson's correlation and Fisher's r to z transformation to obtain
functional graphs.
activation, has been paramount in advancing our understanding

of the functional organization of the brain [21]. Large strides have

been made specifically in brain graphs or connectomes, which are

obtained by computing pairwise correlations between fMRI time se-

ries of different regions of interest (ROIs) [27], as illustrated in Fig. 1.

In this work, we propose a neural network-based framework for

mapping regional and cross-regional functional activation patterns

to cognitive phenotypes, formalized as a classification problem.

Our work is motivated by the special considerations needed for

analyzing fMRI data and the methodological gaps in addressing

these considerations to date. First, fMRI data are inherently high

dimensional and can contain on the order of 10
6
activation values

per subject. Second, fMRI data have a low signal-to-noise ratio

caused by changing levels of non-neural noise derived from car-

diac and respiratory processes or scanner instability. Third, most

available datasets contain a relatively low number of samples when

compared to the dimensionality of the data [22]. Classically in the

neuroscience literature, linear models such as PCA, ICA and other

matrix factorization methods are adopted for dimensionality reduc-

tion and denoising [1, 12, 31], but given the highly nonlinear nature

of functional interactions [41], these models may not adequately

capture the complex relationships between cortical regions. More

recently, neural networks have been proposed for prediction tasks

using fMRI data [28, 41], which can appropriately model nonlin-

earities but require many training samples and long training times

for numerous parameters. Moreover, these neural network mod-

els suffer from the "black box" stigma, as it is difficult to interpret

how the underlying brain activation patterns contribute to the final

model prediction, and are therefore of limited use to the functional

1
Retrieved from https://slideplayer.com/slide/9047889/
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neuroscience community. To address the limitations of these prior

works, we focus on the following problem:

Problem 1. Given a set of subjects, each with corresponding fMRI
data and a label associated with a certain phenotype, we seek to
devise an efficient, interpretable, and parsimonious neural net-
work model that can predict each phenotype with high accuracy.

In this work, we rely on fMRI-based functional graphs (Fig. 1)

to address some of the above-mentioned challenges. Instead of re-

gressing phenotypes, which are often noisy [9], we cast Problem 1

as a classification problem, which is commonly done in the litera-

ture [41] [40]. Further considering the limitations of prior works,

we propose GroupINN, a new neural network-based architecture

which operates on these brain graphs and is efficient, uses fewer

parameters, and provides interpretability. To reduce the number

of parameters used in the model, we adopt the idea of multi-graph

clustering (where the goal is to find a common clustering across

multiple graphs) to summarize the original graph into a super-

graph with each cluster as a supernode [23]. Unlike other work

that performs grouping as a preprocessing step, we achieve the

summarization by designing a novel node grouping layer to reduce

dimensionality as part of our end-to-end neural network model.

To extract features from the learned supergraph, we design a new

variant of a graph convolutional layer that achieves higher accuracy

and can be viewed as an extension of random walk with restart.

The main contributions of our work are:

• Novel, Fast & Parsimonious Model. We propose a new end-

to-end neural network-based formulation that can learn effi-

ciently and effectively from little and noisy data by incorpo-

rating the idea of multi-graph clustering into the architecture

design of the neural network.

• Interpretability. Beyond parameter reduction, the node group-

ing layer of GroupINN can explain relationships between brain

subnetworks and cognitive functions. Some of our findings

are supported in the literature and some may serve as starting

points for further investigation in neuroscience [5–7].

• Experiments on Real Data. Extensive experiments on real

data and comparisons to state-of-the-art approaches show that

GroupINN needs only 0.01% parameters compared to CNN, 11%

compared to Diffpool [44] and 15% compared to the GCN [14],

while it is up to 69×, 3× and 2.6× faster, respectively. At the

same time, it achieves better or comparable accuracy across a

variety of tasks.

The code is available at: https://github.com/GemsLab/GroupINN.

The rest of the paper is organized as follows: Sec. 2 introduces the

related work; Sec. 3 describes GroupINN, our proposed approach;

in Sec. 4, we present our empirical analysis, in which we discuss

the performance (runtime, classification accuracy), parsimony, and

interpretability of our method; we summarize our work and point

out future directions in Sec. 5.

2 RELATEDWORK
Our work is related to brain graph analysis and graph classification.

Table 1 presents a qualitative comparison of our approach to state-

of-the-art techniques that are used for classification of functional

brain graphs, or general graphs.

Brain Graph Analysis. Brain graphs are simple models of the real

underlying connectome [32]. Recent studies have shown that both

structural and functional brain graphs demonstrate common topo-

logical properties, such as modularity, small-worldness, and hetero-

geneous degree distributions [4, 17]. Modularity indicates a high

level of neighborhood clustering [4, 25], which justifies our de-

sign for graph coarsening. The small-world organization of the

brain suggests efficient local information processing, together with

several long-distance connections responsible for global communi-

cation [3, 34, 38]. This further motivates our design choice to have

a graph convolutional layer after coarsening; coarsening captures

localized features, while the convolutional layer captures global

communication.

Graph Classification. We discuss two approaches for classification:

neural network- and kernel-based. In recent years, deep learning

methods [29, 43] have often been used to tackle graph-based prob-

lems. Those methods aim to generalize the traditional convolutional

neural networks (CNN) used in image classification. For example,

[10] defines the neighborhoods in the graph spectral domain and

uses Chebyshev polynomials as a basis to speed up the convolution

computation. A variant [14] of this approach solves the vanish-

ing/exploding gradient problem via a localized first-order approxi-

mation of the spectral graph convolutions. [45] proposes another

variant for general graph classification, which is shown to have a

close relationship to Weisfeiler-Lehman kernels. [44] introduces a

framework that jointly learns the pooling and node embeddings.

However, these deep models are hard to interpret and usually con-

tain a large number of parameters which result in slow training and

overfitting. More traditional approaches for graph classification

include graph similarity approaches based on different network

properties [16, 18] and graph kernels combined with kernelized clas-

sifiers (e.g. SVM). Kernel methods usually compute the similarity

between two networks based on substructures, such as walks [39],

shortest paths [2], graphlets [30], or other subgraphs [15]. [19]

proposes a valid assignment kernel that achieves state-of-the-art

graph classification accuracy. However, most graph kernels cannot

be applied to signed and weighted graphs that brain graphs belong

to, so they are inappropriate for brain graph classification.

Table 1: Qualitative comparison to related work.

Fast Parsimonious Interpretable
CNN [41], GraphCNN [10] ✗ ✗ ✗

GCN [14], DGCNN [45] ✓ ✗ ✗

Diffpool [44] ✓ ✗ inadequate

GroupINN ✓ ✓ ✓

3 PROPOSED ARCHITECTURE
In this section, we first analyze the challenges of fMRI data. Then

we give an overview of our proposed architecture and the design

details. We give the main symbols that are used throughout the

paper, and their definitions in Table 2.

3.1 Challenges
Handling fMRI data poses a series of challenges, which we aim to

address with the design of our approach, GroupINN.
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3.1.1 Noisy fMRI time series. The typical pipeline for handling

fMRI data involves transforming the imaging data into multi-dimen-

sional time series. For one subject, each time series represents the

average activation in one region of interest (ROI) over time. These

time series exhibit patterns that differ vastly across subjects [37],

and there is often no correspondence between timepoints in the

series obtained by different fMRI sessions. To alleviate these issues,

instead of operating on the fMRI time series, we represent each

subject’s data as a brain graph (Fig. 1), where physical ROIs are

represented as nodes and functional connections (i.e., time series

correlations) between them are represented as edges [4].

3.1.2 Noisy fMRI-based brain graphs. The brain graphs or correla-

tion matrices obtained from different sessions for the same subject

vary significantly (even in the same day), exhibiting less than 0.7

correlation. To reduce the variability, we propose a neural network-

based approach that performs classification based on coarsened

brain graphs instead of the (noisier) original graphs.

3.1.3 Small samples of high-dimensional data. Existing datasets

consist of a few hundred subjects, each of whom is represented by a

brain graph (correlation matrix) with entries in the order of 10
4
or

even 10
6
(assuming a few hundred or thousand ROIs / nodes [11]).

Under these conditions, neural network models face the challenge

of overfitting. To overcome this issue, we turn to dimensionality

reduction techniques. But instead of using unsupervised techniques

(e.g., PCA, autoencoders) which are decoupled from the end goal

(e.g., classification), our proposed method supervises the dimen-

sionality reduction process, and provides an end-to-end model.

3.1.4 Need for interpretability. In neuroscience, ability to explain

the results of a model is important for driving scientific discoveries,

such as the relation between brain activation and cognition. To-

wards that end, we bring the idea of graph clustering and random

walk on graphs into the design of the neural network: our design

allows us to inspect which connections between ROIs are indica-

tive to a specific phenotype, which may help answer important

questions in neuroscience.

3.2 Architecture Overview
Our neural network architecture is illustrated in Fig. 2a. It is formed

by three different types of layers: node grouping layer, graph con-

volutional layer and fully connected layer.

A node grouping layer is used for dimension reduction. In this

layer, the original graph G will be summarized into a supergraph

Gs
where each supernode is a group of nodes in G [23]. The output

Ws
of this layer can be viewed as the weighted adjacency matrix

of the supergraph.

Graph convolutional layers are used to probe the graph struc-
ture. There are many variations [10, 14, 45] of how a graph convo-

lutional layer is designed. In this work, we design a new variation

so that it not only has better performance, but also can be explained

from the perspective of random walk with restart. Finally, the fully
connected layer is used for label prediction.

Different from prior graph classification works, we use two

branches in our architecture. This is because the correlation graph

is essentially a weighted signed network. We use one branch to

process the graph with only positive edges (Gp ) and another branch

Table 2: Major symbols and their definitions.

Symbol Definition
G=(V, E) graph G with node set V , edge set E

|V | = n number of nodes in G

W weighted adjacency matrix of G, with elementswi j
Gs

=(Vs , Es ) supergraph with supernode set Vs
, superedge set Es

SNi supernode i in supergraph Gs

Ws
weighted adjacency matrix of Gs

, with elementsws
i j

si importance score of node i learned in the node grouping layer

k number of groups

li label of i th subject

+/− superscripts that denote the positive/negative branch

Λ characteristic matrix of graph G

P the common factor in matrix factorization

F nonnegative matrix with the node importance scores si per group
Q weights that need to be learned in neural networks

Yi output of i th layer

L losses

c(·) c : V → N+ , function mapping the node to its group

Ri functional subnetwork (e.g., dorsal attention) with |Ri | nodes

SR importance score of functional subnetwork R

Sc
Ri ,Rj

cross-subnetwork importance score between Ri , Rj

to process the negative edges (Gn ). In brain graphs, positive and

negative edges have different functional meanings. Without sepa-

rating them, the positive and negative edges will offset each other

during the group aggregation and graph convolution, resulting in

a drop in prediction accuracy (we elaborate more in § 4.6).

3.3 GroupINN Architecture
3.3.1 Node Grouping Layer. Intuition. As mentioned in Sec. 3.1.3

a layer for dimensionality reduction is needed. Recent findings

have shown that some ROIs are most related to cognition [5, 7],

suggesting that some edges are more indicative of predicting cog-

nitive performance. Therefore, the node grouping layer is designed

to “hide” the non-indicative (‘noisy’) edges by grouping them into

a cluster (supernode [23]), thus highlighting the indicative edges.

Figure 2b shows an example of how grouping is done conceptu-

ally. We note that our node grouping is different from traditional

clustering since it does not require that similar nodes are grouped

together. Instead, two nodes are assigned to different groups if their

connection is identified as important.

Design. Given a weighted graph G—in which edge (i , j) is associ-
ated with a weight wi j—, the nodes linked to the non-indicative

edges are grouped together and form a supernode. Groups do not

overlap. In Fig. 2b, there are three groups that form a supergraph

with three supernodes. For node i in graph G, an importance value

si ∈ R+ is assigned indicating how important node i is for the
prediction task. In the supergraph, the weight of the superedge is

computed as a weighted sum of cross-group edges. Formally, the

weight of the superedge ws
SN1,SN2

between supernode SN1 and

supernode SN2 is defined as:

ws
SN1,SN2

=
∑

t∈SN1,k∈SN2

st ·wt,k · sk (1)

To incorporate the grouping idea into the design of a neural

network, we need to represent it in a matrix form. Suppose we

are given an adjacency matrix W (size n × n) for graph G and

a nonnegative matrix F (size n × k), where n is the number of
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(a) Overview: the functional graph (correlation-based) is first split into positive and negative
networks, each coarsened by node grouping layer, convoluted by random-walk-based graph con-
volutional layer, flattened, concatenated and finally sent to the fully connected layer.

(b) Example: In the node grouping layer
indicative edges are learned to be placed
across groups.

Figure 2: GroupINN Architecture

nodes and k is the number of desired groups. Fi j satisfies: Fi j =
si , iff i ∈ SNj ; Fi j = 0, otherwise. Following this definition, Fi j
can also be interpreted as the membership of the node i to the

supernode SNj . This is a more general definition, even suitable for

overlapping clusters, and it requires F to be nonnegative. Note that

there can be some nodes which do not belong to any groups. Then

FTWF represents the weighted adjacency matrix of the supergraph

after grouping the nodes. If Ws
represents the output of the node

grouping layer, then we have: Ws = FTWF. In Fig. 2b, we show

the matrix representation for the node grouping. Notice here, we

do not manually design the matrix F; instead, the neural network
learns F via back-propagation.

Connections to other work. As we show next, our formulation

is related to the unsupervised multi-graph clustering problem [35].

Theorem 3.1 (Relation tomulti-graph clustering). LetW(m)

be the adjacency matrix of each input graph, Λ(m) be the correspond-
ing characteristic matrix (not necessarily diagonal) and P be the com-
mon factor to be learned. The grouping layer, defined by FTW(m)F
with l2 regularization on F and supervision on the characteristic ma-
trices Λ(m), learns the same clustering matrix as the multi-graph
clustering problem [35] that minimizes the following objective:

G =
1

2

M∑
m=1

| |W(m) − PΛ(m)PT | |2F +
α

2

( M∑
m=1

| |Λ(m) | |2F + | |P| |2F

)
(2)

where P is orthogonal (i.e., PTP = I and I is the identity matrix).

Proof. Given that P is orthogonal, Z = | |W(m) − PΛ(m)PT | |2F =

| |PTW(m)P − Λ(m) | |2F holds. For F = P, the factor PTW(m)P is the

output of the grouping layer and term Z can be viewed as the l2 loss

when supervised on Λ(m)
. The term | |P| |2F is the l2 regularization

on P. In this case, the expressions of the total loss of the neural

network and the multi-graph clustering are the same. □

The formulation of [35] is unsupervised so P will not change

with different prediction goals. Matrix P can be viewed as the matrix

learned by the grouping layer with supervision on characteristic

matrices. In the context of other prediction goals, the grouping

layer can be easily incorporated and supervised on those goals.

3.3.2 Graph Convolutional Layer. Graph convolutional layers are

used to capture the structure of the supergraph. Moreover, they

do not require pre-ordering of the nodes and they can perform

nonlinear transformations in the neighborhood of spectral domain.

Many variations of graph convolutional layers have been proposed

to cater to different needs [10, 14, 45].

Intuition. As it is presented in the literature [20, 42], random walk

is a useful tool to sample graph structures. The scores obtained from

random walk with restart (RWR) can reveal a graph’s structure by

quantifying the similarities of other nodes to the selected nodes.

Given the teleport vector q (a set of seed nodes), the RWR scores are

given by (1− c)(I− cW̃)−1q, where c < 1 is a constant and W̃ is the

column normalized adjacency matrix. Since the largest eigenvalue

of cW̃ is smaller than one, Taylor expansion can be applied here.

(1 − c)(I − cW̃)−1q = (1 − c)(I + cW̃ + c2W̃2 + . . .)q (3)

If the series is truncated to a finite sum ofm terms, it represents

the influence of the seed nodes spread overm-hop neighbors. To

better capture the graph structure, different seed sets can be chosen

to characterize the graph structure with different hops of neigh-

borhoods. For the i-hop neighborhood, ifm seed sets are selected

to probe the graph structure, and the corresponding matrix is Q̃i
(each column of Q̃i represents a seed set), the sketch matrix M of

the graph G can be written as:

M = (1 − c)(Q̃0 + cW̃Q̃1 + c
2W̃2Q̃2 + . . .) (4)

Design. This expression can be modified to design a graph con-

volutional layer, which shares some similarities to the literature

[10, 14, 45]. Ignoring the constants and using the reduced adjacency

matrix Ws
to replace W̃, the output Yi of layer i can be computed

as a nonlinear function of the previous layer output Yi−1:

Yi = σ (cWsYi−1Qi + I) (5)

where σ is a nonlinear function. In this work, σ represents ReLU.

If σ is the identity function, then the output after stacking i layers
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is: Yi = I + cWsQi + c
2(Ws )2QiQi−1 + . . ., which is analogous

to Eq. (4) truncated to i terms (where we omit the constants and

replace QiQi−1 . . .Qi−j+1 with Q̃j ).

3.3.3 Constraints and Losses. We add several loss terms to regular-

ize the learning process. Some are added due to the requirement

for interpretability, while others are used to prevent overfitting. All

of them improve the performance, as we show empirically in § 4.6.

For the node grouping layer, the matrix F is nonnegative because

it represents the membership of a node to a group. However, in the

neural network, the trainable matrices can have negative values.

Thus, for the trainable real-valued matrix F̃, we represent as: F =

Relu (̃F), so the output of the node grouping layer becomes: Ws
=

Relu (̃FT) W Relu (̃F) in the dimensionality reduction layer. This will

create a problem because for negative values initialized in thematrix

F̃, the gradients are 0 and they will not be updated later. To avoid

this problem, we penalize the sum of negative values in matrix

F̃, which can be expressed as: L
neg_reduce

= sum(Relu(−F̃)). To
prevent overlapping of groups, orthogonal constraints are added (on

the nonnegative matrices) by penalizing the off-diagonal elements

of FTF: L
otho
= | |FTF − diag(diag_part(FTF))| |F. Here, diag_part(·)

extracts diagonal elements from a matrix and diag(·) builds a matrix

with the given diagonal elements. Furthermore, to balance the group

sizes (which helps with interpretability), we introduce the balance

loss: L
balance

= Var(diag_part(FTF)), where Var(·) means variance.

Similarly, since Qi represents the selection of seed sets, posi-

tive values are more encouraged than the negative ones. A sim-

ilar loss to penalize negative values is applied here: Lneg_RWR =

Sum(Relu(−Qi )). At last, for the last dense layer with softmax as

activation, L2 loss is used to reduce overfitting.

3.3.4 Putting everything together. All in all, the architecture (Fig. 2a)
consists of three kinds of layers and two branches. One branch pro-

cesses the positive graphs and the other processes the negative

ones. The input graph is the correlation matrix W. The first layer

is a dimensionality reduction layer and the output is a matrix Ws

representing the supergraph. For the positive branch (using "+" as

superscript), we have Ws+ = Relu (F+T)W+Relu (F+). We have a

similar expression for negative branch (using "−" as superscript).

Following the dimensionality reduction layer, three graph convolu-

tional layers are used

Y+
0
= I and Y+i = σ (cWs+Y+i−1Q+i + I), i = 1, 2, 3 (6)

Y−
0
= I and Y−

i = σ (cWs−Y−
i−1Q−

i + I), i = 1, 2, 3 (7)

At last, Y+
3
and Y−

3
are concatenated, flattened and sent to the

fully connected layer (with softmax activation). The total loss is

expressed as follows:

L
total
= Lcross_entropy +

∑
i=+,−

(
λ
(i)
otho

L(i)
otho
+ λ

(i)
balance

L(i)
balance

)
+ λneg

(
Lneg_RWR + L

neg_reduce

)
+ λ

dense
L2 (8)

4 EXPERIMENTS
Through our empirical analysis we aim to answer five key questions:

Q1 How well does GroupINN perform in terms of accuracy

and training time when compared to neural network-based

models in brain graph classification tasks?

Q2 How does GroupINN compare to the accuracy of non-neural-

network-based models in brain graph classification tasks?

Q3 Is GroupINN parsimonious? How many fewer parameters

does it require compared with other neural network-based

methods?

Q4 Are the results of GroupINN interpretable? How can it be

used to gain insights into the data?

Q5 How does positive and negative network splitting help in

terms of accuracy? How do different regularization terms

affect classification results?

First, we describe the data we used in our experiments, the base-

line methods, the metrics used for evaluation, and the experimental

setup. Then, we present our experimental results to answer our five

key questions.

4.1 Experimental Setup
4.1.1 Data. In our experiments, we use four labeled datasets from

Human Connectome Project 1200 release (HCPt) [36] to evaluate our
proposed framework and compare it to baseline approaches. A total

of 966 subjects had brain activity measured in fMRI session while

performing specific tasks designed to probe different aspects of

cognition. Voxel-level time series were spatially averaged according

to the parcellation in [26], resulting in 264 distinct ROIs with a time

series for each. The length of each time series depends on the

task being performed, ranging from 176 to 405 time points. The

four task-based datasets used in our experiments are: Emotion,
Gambling, Social, and Working Memory. Per subject we also have
a score called General Executive Factor (GenExec), a measure of

general intellectual ability that we use as the label to predict (see

Section 4.1.3).

Following the steps in Fig. 1 and Sec. 1, we transform the fMRI

time series data into functional graphs. Since each subject has two

trials per task, we follow a similar approach as in [33] to generate a

single connectome by averaging the correlation matrices generated

from the time series of each trial.

4.1.2 Baselines. Since Problem 1 is drawn from neuroscience, fMRI

data can be in the form of time series or functional graphs, and we

provide a neural network-based solution, we compare GroupINN

to representative methods from each research area:

(1) Flattened Correlation Matrix (FCM). In this approach, the

full correlation matrix is computed for all time series and its flat-

tened upper triangular matrix is taken as a feature vector. SVM

with radial basis function kernel is applied for classification.

(2) FlattenedPartial CorrelationMatrix (FPCM).This approach
is the same as above, but rather than full correlation we compute

partial correlation to regress out covariates.

(3) PCA. PCAwith 100 components [31] is performed on the stacked

flattened correlation matrices for all subjects. SVM is then used

for classification.

(4) Autoregression (AR). In this approach, ak-order auto-regression
(AR) model is used to fit the time series of each ROI of every

subject. The corresponding k + 1 parameters of each ROI are

stacked to form a parameter matrix, and the flattened parameter

matrix is adopted as the feature vector of the subject. Here we

select k = 5 to ensure that the correlation values can fall into

the 99% confidence interval. The feature vectors for each subject
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are subjected to dimensionality reduction using PCA with 100

components before they are sent into the classifier.

(5) Weisfeiler-LehmanOptimalAssignmentKernel (WL_OA).
To apply WL_OA kernel [19] for classification, we first obtain

unweighted functional brain networks by thresholding the cor-

relations at 0.6 (based on the performance of validation set).

(6) CNN. The architecture of our Convolutional Neural Network
models includes convolution layers (C), pooling layers (P) and a

fully connected layer (F); the activation function is ReLU. The

configuration of each layer follows the setting in [41]. We imple-

ment two CNN models as baselines: (6a) CNN_1 (1 convolution
layer, 87122K parameters): C-P-F-Softmax; and (6b) CNN_2 (2

convolution layers, 21844K parameters): C-P-C-P-F-Softmax.

(7) GCN. We concatenate the node features obtained from the

GCN [14] model and fed to a fully connected layer.

(8) Diffpool. For this hierarchical graph embedding approach [44],

we set the parameters based on the authors’ guidelines.

Recently more NN-based methods that apply to brain data have

been proposed [41] [40]. However, the code of these models is not

publicly available, and they require significant engineering which

is hard to reproduce fairly based solely on the papers.

4.1.3 Settings. The same 90% training/validation and 10% testing

split is used for all the experiments. The siblings in the HCP data

are assigned either to the training or the testing set (but not both).

The goal is to classify subjects with high or low executive func-

tion using the GenExec score. GenExec is based on overall accuracy

for three tasks: n-back working memory task, relational processing

task, and Penn Progressive Matrices task. We cast the problem as a

binary classification task by assigning the top quartile of subjects to

the ‘positive’ class, and the bottom quartile to the ‘negative’ class.

For neural network based methods, we further split a subset

(10%) from the training data as the validation set to select proper

hyper-parameters for evaluation. We train the model for 300 epochs.

After each epoch, we evaluate the model using the validation set,

and keep the model with the highest F1 score so far, while also

satisfying the restrictions that the difference between true positive

rate and true negative rate is smaller than 5%, requiring the classifier

to be unbiased. For the same method, we run three independent

training sessions, and report the average accuracy of the three

trained models on the test set and the total CPU time spent in the

training process. To ensure the comparability of the performance

of different methods, the same training, validation and testing split

is used in all experiments. For baseline experiments using SVM,

five-fold cross validation is used with grid search to determine best

hyperparameters.

4.1.4 Evaluation Metrics. To evaluate the prediction performance,

following [41], our evaluation metrics are classification accuracy

and runtime (total CPU time, including both user and system CPU

time). In addition, we use F1 score of the validation set to select our

models. To show that GroupINN is parsimonious, model sizes are

given for comparisons. To evaluate the interpretability of GroupINN,

we define the importance scores of inner- and across- subnetworks

to rank the most relevant subnetworks to GenExec scores. We

further compare the relevant regions found by different baselines,

and verify the quality based on the support from the literature.

4.2 Q1: Performance Comparisons with Neural
network-based Models

In this experiment, we compare with different neural network-

based methods via accuracy and training time. Two variants of our

model are used: one is GroupINN, the other is GroupINN without

the orthogonality constraint. As we illustrated in Section 3.3.3, the

orthogonality constraint controls how much overlap is allowed be-

tween the groups found. Figure 3 shows the comparisons of predic-

tion accuracy vs training time over four different datasets: Emotion,
Gambling, Social and Working Memory. Speedup of GroupINN

over the baseline methods is also annotated in the plots. Ideally, the

best method lies in the top left corner of the plots.

In general, our methods (including two variants) achieve the best

accuracy in three out of four datasets, namely, Emotion, Gambling
and Social. In the dataset Working Memory, the difference of ac-
curacy between GroupINN and the best method CNN_1 is merely

around 1%. Notice that not all tasks are cognitive intensive and

closely related to GenExec score, which makes it harder to predict

in less relevant tasks. The most related task is Working Memory,
which is used to calculate the GenExec score. In this task, every

method (except for Diffpool) performs equally well. However, in

less relevant tasks, the advantages of our methods are revealed.

More importantly, our methods always take the least training
time among all the baseline methods. We achieve around 2.5×

speedup against GCN method, 3× speedup against Diffpool, 25×

speedup against one-layer CNN and 66× speedup against two-

layer CNN. This is due to our model having considerably fewer

parameters (§ 4.4).

4.3 Q2: Performance Comparison with
Non-neural-network-based Models

Figure 4 shows the comparison of prediction accuracy between

our methods and non-neural-network-based methods. In all the

datasets, either GroupINN or GroupINN without orthogonality per-

forms the best. Methods that try to utilize the temporal patterns do

not workwell in general. ARmodels the temporal relationship of the

time series and the prediction accuracy is 15%-20% lower than ours.

In our experiments, we also tried other time-series-based methods,

such as LSTM, 1D CNN, but none of them produce satisfactory

results (less than 60% accuracy) that are close to graph-based meth-

ods. For the graph based methods, FPCM consistently performs

the worst, and even in the most related task, Working Memory, its
prediction accuracy is as low as 40%. This might result from the

noisy temporal patterns which produce false partial correlations.

On the other hand, a similar method, FCM, performs much better

than FPCM, but still worse than ours: 1%, 7%, 3%, 2% lower accu-

racy in Emotion, Gambling, Social and Working Memory tasks,

respectively. The state-of-the-art graph kernel, WL_OA, cannot

apply on signed and weighted graphs. Thus, for this approach we

first threshold the data to obtain unweighted graphs. The incurred

information loss from this process results in WL_OA achieving con-

sistently lower performance than GroupINN, PCA and FCM. PCA

gives comparable results in Social and Working Memory tasks, but
in the Emotion and Gambling tasks (where the related patterns are

not obvious) our methods outperform PCA by 5%. In Section 4.5,

Research Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

777



2.6×

26.2×

68.3×

3.1×

(a) Emotion

2.5×

25.4×

66.4×

3.0×

(b) Gambling

2.5×

24.7×

66.1×

3.0×

(c) Social

2.6×

23.9×

65.0×

3.0×

(d) Working Memory

Figure 3: Training time (x axis) vs. accuracy (y axis) for GroupINN and other neural network-based models, with the speedup of GroupINN
annotated over the arrows. The most ideal points lie on the top left corner, corresponding to low runtime and high accuracy. Our proposed
GroupINN models are up to 69× faster at training than all the baseline methods, while achieving same or higher accuracy in a variety of
prediction tasks.

Figure 4: Accuracy compared with non-neural-network-based mod-
els. Our models have better or comparable accuracy across all data.

Table 3: Number of parameters used in neural network based meth-
ods. GroupINN can use 15% or much less model parameters to
achieve comparable or better performance of the baselinemethods.

Methods # parameters Normalized wrt GroupINN

CNN-1 87,121,602 30, 125.04×

CNN-2 21,844,152 7, 553.30×

GCN 19,874 6.87×

Diffpool 26,678 9.22×

GroupINN 2,892 1×

we will see that even in the less related tasks, our model can still

pick out the task positive functional subnetworks.

All in all, if the data is directly related to the phenotype predicted

(Working Memory), the prediction accuracy of graph-basedmethods,

like PCA and FCM, is equal or lower than ours by a small margin

(around 1-2%). However, if the data is more complex and not directly

related to the phenotype (Emotion and Gambling), our methods

outperform them by more than 5%. This is understandable, because

neural networks are known for modeling complex relations.

4.4 Q3: Parsimony of GroupINN
So far we have seen that our models have better or comparable

accuracy to the baseline methods. In addition to that, compared to

neural network methods, GroupINN achieves significantly faster

training time, only 1.33 hours total CPU time on average for all

datasets. The speedup comes from the small number of model

parameters. Table 3 shows the parameters used in each neural

network-based model (first column) and we also show the ratio

compared to ours. We can see that even the fastest baseline GCN

uses about 7× more parameters than our methods. This explains

why other methods need at least 2.5× more training time than

GroupINN. In most task based cases, GCN and Diffpool do not

perform as well as our GroupINN. CNN sometimes is comparable,

but uses many more parameters than ours (up to 30,125×more than

GroupINN), so it takes more than 65 times longer to train than our

methods. These observations indicate that GroupINN effectively

captures the main characteristics of the data.

4.5 Q4: Interpretability of GroupINN
Our method is interpretable and can reveal the subnetworks that

are most informative to the prediction goals. In this section, we

use 14 expertly-defined functional subnetworks and analyze them

along with the learned matrices F. We show how our method can

provide insights on the relation.

We use the learned matrices F obtained from each task. Though

the data is acquired when people are performing different tasks,

the prediction goal is the same: to predict the GenExec levels.

As illustrated in Fig. 2b, the cross edges areweighted and summed

up to form a superedge. For the edge with weightwi, j , it is multi-

plied by a factor sisj . In this sense, sisj can be viewed as an ampli-

fication factor of the edge (i, j). Given a subnetwork, we compute

the average amplification factor of an edge within it. Mathemati-

cally, for a given subnetwork (a node set R) and a group mapping

function (maps the node to the groups found in F), c : N→ N, we
assign an importance score S to each subnetwork as:

SR =
2

|R |2

∑
i, j ∈R and c(i),c(j)

sisj (9)

We then rank the subnetworks based on S score. Also, to explore

the important cross-subnetwork connections, we define a score, Sc ,
between any functional subnetworks R1 and R2:

Sc
R1,R2

=
1

|R1 | |R2 |

∑
(i∈R1, j∈R2 or i∈R2, j∈R1),c (i ),c (j )

si sj (10)

We rank the combination of subnetworks based on the Sc score.
We list the three most important subnetworks (with highest S

score) and cross-subnetwork combinations (with the highest Sc

score) in Table 4. We provide their visualizations in supplementary

material C. The results are based on F in the positive branch because

positive links are more related. For comparison, we also list the

important regions found by two baseline methods: For PCA, SR is

defined as the average node weight of region R in the first principal

component. For Diffpool, we compute SR via Eq. (9) for each subject

separately because the learned clustering differs per graph. We find
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Table 4: Tasks and the corresponding most important subnetworks and cross-subnetwork combinations (ordered by importance). GroupINN
is interpretable as it can find meaningful task-positive subnetworks (shown in black font, left part of the table). On the other hand, PCA
and Diffpool fail to discover them and rank as important other subnetworks (in gray font). Some of our findings about the cross-subnetwork
interactions (right part of the table) are supported by the literature and may be worth further investigation.
*Acronyms of brain subnetworks. AN: auditory; CBLN: cerebellar; CON: cingulo-opercular; DAN: dorsal attention; FPN: frontoparietal; MRN:
memory retrieval; SN: salience ; VAN: ventral attention ; VN: vision; SM.M: sensory/somatomotor mouth; SM.H: sensory/somatomotor hand.

Tasks Within subnetworks Across subnetworks

GroupINN PCA Diffpool GroupINN

Working Memory MRN FPN SN SM.M SM.H AN SM.M MRN CBLN (MRN, FPN) (MRN, VN) (MRN, SN)

Gambling VAN VN DAN SM.H AN SM.M SM.M FPN MRN (MRN, FPN) (MRN, VN) (SM.M, VN)

Emotion SN CON VAN SM.M SM.H AN DMN MRN SM.M (MRN, SN) (VAN, SN) (VAN, FPN)

Social FPN SN VAN SM.M CBLN AN DAN SM.M FPN (MRN, VN) (VAN, VN) (SM.M, SN)

the most important regions by ranking their average scores across

all the subjects.

Focusing on thewithin-network connections found byGroupINN,

salience (SN) and ventral attention (VAN) are seen in three out of

four tasks, fronto-parietal task control (FPN) is seen in two out

of four, cingulo-opercular task control (CON) and dorsal attention

(DAN) are also present. SN, VAN, FPN, CON, and DAN comprise ma-

jor elements of the so-called task-positive network that are active

whenever a person performs a cognitively demanding task [7, 13].

It is not surprising that these networks are predictive of GenExec,

which represents ability to perform cognitively demanding tasks.

GroupINN successfully discovers all of them. On the other hand,

PCA fails to discover any of the task-positive networks. Instead,

PCA ‘picks’ noisy but strong signals that are related to motion,

vision and hearing. Similarly, Diffpool only finds two related re-

gions. The results suggest that GroupINN is interpretable and can

pinpoint the regions that relate to cognition during various tasks

more accurately than baseline approaches.

We further investigate the cross connections found by ourmethod.

The cross connections between (memory retrieval ↔ FPN) and

(memory retrieval ↔ salience) are found to be highly predictive in

two of the four tasks. Many studies of task-specific functional acti-

vation have also shown strong integration of memory subnetworks

with other subnetworks in cognitively demanding tasks [5, 6, 8],

such as those represented by the GenExec measure. Our findings

suggest that the above-listed task-specific network integrations

may warrant further study in the context of executive function.

4.6 Q5: Impact of network splitting and
regularization terms

In this section, we explore the importance of the various design

choices for GroupINN. We first compare our full method with a

variant (wo_+-_split) in which the positive and negative networks
are not split, but are handled as a unified network. Figure 5 shows

the comparison. We observe that in three out of four cases, splitting

the network into positive and negative networks has higher accu-

racy than not splitting. Especially in the Gambling dataset, splitting
achieves 12% higher accuracy.

Then, to show the impact of each regularization term, we per-

form experiments to compare the prediction accuracy when dif-

ferent regularization terms are not added. The different variants

are: not adding orthogonality loss L
otho

(wo_orthogonality), not
adding group balance loss L

balance
(wo_balance), not adding the

nonnegativity loss which consists of L
neg_reduce

and Lneg_RWR

Figure 5: Impact of adding each regularization term. Splitting the
network into positive and negative ones, adding variance, non-
negativity constraints and l2 regularization are effective in improv-
ing accuracy.

(wo_nonnegativity), not adding L2 loss (wo_l2) and not adding

any regularization (wo_any_reg). From Fig. 5, we can see that

adding balance and nonnegativity constraints are always helpful

as GroupINN wins all the cases over the variant (wo_balance) or
(wo_nonnegativity). This result is in line with our assumption

about grouping, since membership score should not be negative

and unbalanced group assignment should be avoided. Adding L2
regularization also helps, as the accuracy is improved in the Social
and Working Memory datasets, but it does not improve much in the

Emotion and Gambling datasets. The influence of adding orthogo-

nality constraint is more complex: In the Emotion dataset, adding
orthogonality constraint has a slight accuracy decrease (0.7%), while

in the Gambling dataset a small accuracy boost (1.7%) is observed;

In the Working Memory dataset there is a 7% accuracy drop, while

in the Social dataset, there is a 8% accuracy increase. We posit that

this complex behavior may be related to how brain regions interact

with each other in different tasks—the more overlapping the data,

the more ROIs are coordinating between different regions.

5 CONCLUSION
In this work, we introduce a novel neural network-based method,

GroupINN, for mining fMRI data. FMRI data is characterized by

large variations, both between subjects and within a single subject,

thus exhibiting a significant level of noise. Furthermore, only a

limited amount of data is accessible (e.g., few subjects) relative to

the dimensionality of the data. These challenges require a model
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with few parameters, as well as the capability of capturing non-

linearities. Prior works using linear models cannot capture com-

plex relationships between brain regions, while traditional neural

network-based methods often require numerous parameters and

lack interpretability. By introducing the idea of node grouping into

the design of the neural network and designing a random-walk-

based variant of graph convolutional layer, GroupINN requires up

to ×69 times less training time than the baselines, achieves 85− 99%

reduction in parameters, and shows consistently better or compara-

ble prediction accuracy. Moreover, our model can provide insights

into brain subnetworks that are relevant to the prediction goal,

providing interpretable results that are useful for neuroscientists.

For future work, combining temporal features into the current

architecture is an interesting direction.
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SUPPLEMENTARY MATERIAL ON REPRODUCIBILITY

A ENVIRONMENTS USED FOR THE
EXPERIMENTS

The experimental platform is implemented in Python 3; all neural

network models, including GroupINN, CNN and GCN, are imple-

mented using TensorFlow 1.8; some test scripts are written in bash.

Anaconda (version 5.1 or higher), TensorFlow (version 1.8 or higher),

GNU time and other standard Unix-style terminal tools are utilized

to run the experiments.

We use twomachine in the experimental process. One machine is

equippedwith GPU to accelerate training and evaluation process for

neural network-based methods, especially for CNNmodels, and it is

used in all experiments except for the experiment of measuring the

training time. The GPU should have at least 4 GB graphical memory

to ensure that it can host all CNN parameters in the memory, and

TensorFlow 1.8 with GPU support should be installed.

In experiment described in Section 4.2 about measuring and

comparing the training time for different neural network-based

methods, we test each methods on a machine without GPU. The

reasons for this choice are two folds: on one hand, we would like to

illustrate that GroupINN and GCN do not necessarily require GPU

to accelerate, since it only uses 1.33 hours in average total CPU

time for all datasets; on the other hand, when GPU acceleration is

not available, all computations will be performed by CPU, which

allows us to compare the computing resources needed for each

method by comparing their total CPU time directly. The hardware

configuration of the machine is shown in Table 5.

Table 5: Hardware configuration for the machine used in training
time measurement.

HW Category Specifications

CPU 2 × Intel(R) Xeon(R) CPU E5-2697 v3 @ 2.60GHz

Memory 1024 GB

GPU N/A

B DATA PREPARATION
As we have mentioned in Section 4.1, we use datasets from Human

Connectome Project 1200 release (HCPt) [36] to evaluate our pro-
posed framework and compare it to baseline approaches. We sort

the subjects by the strength of General Executive Factor (GenExec)

in descending order, and cast the problem as a binary classifica-

tion task by assigning the top quartile of subjects to the ‘positive’

class, and the bottom quartile to the ‘negative’ class. The top and

bottom quartile of subjects are the samples which are used in our

experiments.

Within the top and the bottom quartile, we follow the training

and testing split recommended in this dataset, since the recom-

mended split has been chosen to avoid siblings between the train-

ing and testing set. However, since the number of ‘positive’ and

‘negative’ samples are not balanced in the training set following

the recommended split, a stratified selection is made when select-

ing 10% validation set from the training data. Thus, the validation

set will have the same ratio of positive to negative samples as the

training set.

When generating each sample batch used for training, we ran-

domize the permutation and balance the number of positive and

negative samples of each batch to increase the convergence speed

and robustness of the training process:

(1) Each epoch begins with a sample pool consisting all samples

from the training set.

(2) Balancing the number of positive samples and negative sam-

ples in the sample pool: we randomly replicate some samples

in the smaller category to make the size of the smaller cate-

gory and the larger category equal in the pool.

(3) To form a batch of n samples with equal number of posi-

tive and negative samples, we randomly take n/2 positive
samples and n/2 negative samples respectively out of the

pool.

(4) Repeat the previous step, until the sample pool has less than

n samples. In this case, take all remaining samples in the

pool as the final batch of this epoch.

In our experiments we used batch size n = 16.

C VISUALIZATION OF IDENTIFIED
SUBNETWORKS

In Section 4.5 we discussed the interpretability of GroupINN and

contrasted it to baseline methods, such as PCA and Diffpool. Here

we visualize the results of Table 4. Specifically, Fig. 6, 7, 8 show the

top 3 important regions identified by GroupINN, PCA, and Diffpool,

respectively. Green represents the 1st important region, orange

represents the 2nd most important region, purple represents the

3rd most important region.
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(a) Working Memory: MRN, FPN, SN (b) Gambling: VAN, VN, DAN (c) Emotion: SN, CON, VAN (d) Social: FPN, SN, VAN

Figure 6: Front, left and right views of themost important functional subnetworks identified by GroupINN during different tasks. Green color
for the top-1 identified region; orange for the top-2 region; and purple for the top-3 region.

(a) Working Memory: SM.M, SM.H,
AN

(b) Gambling: SM.H, AN, SM.M (c) Emotion: SM.M, SM.H, AN (d) Social: SM.M, CBLN, AN

Figure 7: Front views of regions identified by PCA during different tasks. Green color for the top-1 identified region; orange for the top-2
region; and purple for the top-3 region.

(a) Working Mem.: SM.M, MRN,
CBLN

(b) Gambling: SM.M, FPN, MRN (c) Emotion: DMN, MRN, SM.M (d) Social: DAN, SM.M, FPN

Figure 8: Front views of regions identified by Diffpool during different tasks. Green color for the top-1 identified region; orange for the top-2
region; and purple for the top-3 region.
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