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Abstract
Relational knowledge bases (KBs) are com-
monly used to represent world knowledge in
machines. However, while advantageous for
their high degree of precision and interpretabil-
ity, KBs are usually organized according to
manually-defined schemas, which limit their
expressiveness and require significant human
efforts to engineer and maintain. In this review,
we take a natural language processing perspec-
tive to these limitations, examining how they
may be addressed in part by training deep con-
textual language models (LMs) to internalize
and express relational knowledge in more flex-
ible forms. We propose to organize knowl-
edge representation strategies in LMs by the
level of KB supervision provided, from no KB
supervision at all to entity- and relation-level
supervision. Our contributions are threefold:
(1) We provide a high-level, extensible tax-
onomy for knowledge representation in LMs;
(2) Within our taxonomy, we highlight notable
models, evaluation tasks, and findings, in or-
der to provide an up-to-date review of current
knowledge representation capabilities in LMs;
and (3) We suggest future research directions
that build upon the complementary aspects of
LMs and KBs as knowledge representations.

1 Introduction

Knowledge bases (KBs) are data structures that
connect pairs of entities or concepts by seman-
tically meaningful symbolic relations. Decades’
worth of research have been invested into using
KBs as tools for relational world knowledge repre-
sentation in machines (Minsky, 1974; Lenat, 1995;
Liu and Singh, 2004; Bollacker et al., 2008; Vran-
dečić and Krötzsch, 2014; Speer et al., 2017; Sap
et al., 2019; Ilievski et al., 2021).

Most large-scale modern KBs are organized ac-
cording to a manually engineered schema that spec-
ifies which entity and relation types are permitted,
and how such types may interact with one another.
This explicit enforcement of relational structure is

both an advantage and a drawback (Halevy et al.,
2003). On one hand, schemas support complex
queries over the data with accurate, consistent, and
interpretable answers. On the other hand, schemas
are “ontological commitments” (Davis et al., 1993)
that limit flexibility in how knowledge is stored, ex-
pressed, and accessed. Handcrafted schemas also
require significant human engineering effort to con-
struct and maintain, and are therefore often highly
incomplete (Weikum et al., 2021).

Language models as KBs? The tension be-
tween structured and unstructured knowledge rep-
resentations is not new in natural language process-
ing (Banko and Etzioni, 2008; Fader et al., 2011).
However, only recently has an especially promis-
ing solution emerged, brought about by break-
throughs in machine learning software, hardware,
and data. Specifically, deep contextual language
models (LMs) like BERT (Devlin et al., 2019) and
GPT-3 (Brown et al., 2020) have shown to be ca-
pable of internalizing a degree of relational world
knowledge within their parameters, and express-
ing this knowledge across various mediums and
tasks—in some cases, without the need for a prede-
fined entity-relation schema (Petroni et al., 2019;
Roberts et al., 2020). Consequently, some have be-
gun to wonder whether LMs will partially or even
fully replace KBs, given sufficiently large training
budgets and parameter capacities.

Present work In this review, we summarize re-
cent compelling progress in machine representation
of relational world knowledge with LMs. We pro-
pose to organize relevant work by the level of KB
supervision provided to the LM (Figure 1):

• Word-level supervision (§ 3): At this level,
LMs are not explicitly supervised on a KB, but
may be indirectly exposed to KB-like knowl-
edge via word associations in the training cor-
pus. Here, we cover techniques for probing
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Figure 1: A high-level overview of our taxonomy, orga-
nized by level of KB supervision provided.

and utilizing this implicitly acquired knowl-
edge.

• Entity-level supervision (§ 4): At this level,
LMs are supervised to acquire knowledge of
KB entities. Here, we organize strategies from
“less symbolic” to “more symbolic”: Less sym-
bolic approaches train LMs with entity-aware
language modeling losses, but never explicitly
require the LM to link entity mentions to the
KB. By contrast, more symbolic approaches
involve linking, and may also integrate entity
embeddings into the LM’s parameters.

• Relation-level supervision (§ 5): At this
level, LMs are supervised to acquire knowl-
edge of KB triples and paths. Again, we or-
ganize strategies from less to more symbolic,
where less symbolic approaches treat triples as
fully natural language statements, and more
symbolic approaches incorporate dedicated
embeddings of KB relation types.

For each supervision level, we provide notable ex-
amples in terms of methodology and/or findings,
and compare the benefits and drawbacks of differ-
ent approaches. We conclude in § 6 with our vision
of the future, emphasizing the complementary roles
of LMs and KBs as knowledge representations.

Related work As this topic is relatively nascent,
few related surveys exist. Closest to our own
work, Colon-Hernandez et al. (2021) cover meth-
ods for combining contextual language representa-
tions with graph representations, albeit with a com-
paratively narrow scope and no discussion of im-
plicit knowledge. Liu et al. (2021a) survey prompt-
based learning in LMs, which overlaps with our
discussion of cloze prompting in § 3.1, although
relational world knowledge is not their main focus.

2 Preliminaries

We briefly review preliminaries and assumptions
necessary for our survey.

Knowledge bases We use the term “knowledge
base” (KB) to refer to a relational data structure
comprising a set of entities E, relation types R,
and triples (s, r, o) ∈ E×R×E, where s, o ∈ E
are subject and object entities, respectively.1 We
consider two types of KBs under the umbrella of
“relational world knowledge.” Encyclopedic KBs
store facts about typed, disambiguated entities; a
well-known example is the Wikidata KB (Vran-
dečić and Krötzsch, 2014), which, like its sister
project Wikipedia, is publicly accessible and col-
laboratively constructed. By contrast, in common-
sense KBs, “entities” are typically represented by
non-canonicalized free-text phrases. Examples in-
clude the publicly accessible, crowdsourced Con-
ceptNet (Liu and Singh, 2004; Speer et al., 2017)
and ATOMIC (Sap et al., 2019) KBs.

Language models Following the contemporary
NLP literature, we use the term “language model”
(LM) to refer to a deep neural network that is
trained to learn contextual text representations.
LMs generally come pretrained, with parame-
ters pre-initialized for generic text representation
via self-supervised training on large corpora, and
may be used as-is after pretraining, or further fine-
tuned with supervision on downstream task(s).
This work considers LMs based on the Trans-
former architecture (Vaswani et al., 2017), ex-
amples of which include the encoder-only BERT
family (Devlin et al., 2019; Liu et al., 2019), the
decoder-only GPT family (Brown et al., 2020), and
the encoder-decoder T5 (Raffel et al., 2020) and
BART (Lewis et al., 2020) families.

3 Word-level supervision

The standard language modeling task is to predict
the n-th word in a sequence of n words—that is,
a conditional probability estimation task (Radford
et al., 2019). While many variants of this task
have been proposed to allow LMs to condition their
predictions on different inputs (Devlin et al., 2019;
Raffel et al., 2020; Lewis et al., 2020), a notable
feature of all such approaches is that they operate
at the word (and subword) level.

If these supervision techniques do not incorpo-
rate KBs at all, how are they relevant when con-
sidering LMs as relational knowledge representa-
tions? The answer is simple. Typical language

1For our purposes, we consider the terms “knowledge base”
and “knowledge graph” as interchangeable.



Table 1: Taxonomy and representative examples for extracting relational knowledge in word-level pretrained LMs,
with evaluation tasks that have been conducted in the referenced papers. Glossary of evaluation tasks: KP—
knowledge probing; QA—question answering; CR—compositional reasoning; KC—knowledge base construction.

Knowledge extracted via... Extraction strategy Representative examples Evaluation task(s)
KP QA CR KC

Cloze prompts (§ 3.1)

Prompt handcrafting (Petroni et al., 2019; Dufter et al., 2021) 3

Automatic prompt engineering
(Jiang et al., 2020b; Shin et al., 2020; Zhong
et al., 2021; Qin and Eisner, 2021)

3

Adversarial prompt modification
(Kassner and Schütze, 2020; Petroni et al.,
2020; Poerner et al., 2020; Cao et al., 2021)

3

Varying base prompts
(Elazar et al., 2021; Heinzerling and Inui,
2021; Jiang et al., 2020a; Kassner et al., 2021)

3

Symbolic rule-based prompting (Kassner et al., 2020; Talmor et al., 2020a) 3 3

Statement scores (§ 3.2)
Single-LM scoring (Tamborrino et al., 2020; Zhou et al., 2020) 3 3

Dual-LM scoring (Davison et al., 2019; Shwartz et al., 2020) 3 3

modeling corpora like Wikipedia are known to con-
tain KB-like assertions about the world (Da and
Kasai, 2019). LMs trained on enough such data
can be expected to acquire some KB-like knowl-
edge, even without targeted entity- or relation-level
supervision. Therefore, in order to motivate the
necessity (if at all) of KB supervision, it is crucial
to first understand what relational world “knowl-
edge” LMs acquire from word-level pretraining.
In this section, we cover strategies to extract and
utilize this knowledge under the cloze prompting
(§ 3.1) and statement scoring (§ 3.2) protocols. Ta-
ble 1 provides a taxonomy for this section, with
representative examples and evaluation tasks.

3.1 Cloze prompting

The cloze prompting protocol (Taylor, 1953 and
Figure 2) is a direct approach for extracting and
evaluating KB-like knowledge in pretrained LMs.
Under this protocol, KB triples are first converted
to natural language assertions using (e.g.) relation
templates. For each assertion, the token(s) corre-
sponding to the object entity are held out. A frozen
pretrained LM then ranks candidate tokens within
its vocabulary by the probability that they fill in
the empty slot(s). Accuracy is typically measured
by the proportion of prompts for which the cor-
rect answer appears in the LM’s top-k predictions,
with the assumption that better performance im-
plies more pretrained knowledge within the LM.

Handcrafted prompts in English with single-
token answers make up LAMA (Petroni et al.,
2019), one of the earliest and most widely-used LM
cloze probes. LAMA, which is mapped primarily
to Wikidata and ConceptNet triples, was initially
used to compare pretrained LMs’ knowledge to off-
the-shelf KB question answering systems. Petroni
et al. (2019) showed that pretrained BERT is com-

Figure 2: Probing relational knowledge in pretrained
LMs with cloze prompts generated from KB triples.

petitive with a supervised relation extraction model
that has been provided an oracle for entity link-
ing, particularly for 1-1 queries. Subsequent work
has experimented with handcrafted templates for
probing the knowledge of both very large (hundred-
billion parameter) LMs (Brown et al., 2020) as well
as non-contextual word embeddings, i.e., as a sim-
ple control baseline for LMs (Dufter et al., 2021).
Both studies demonstrate some success, particu-
larly in cases where the probed model is provided
a small amount of extra context in the form of con-
ditioning examples (Brown et al., 2020) or entity
type information (Dufter et al., 2021).

Automatic prompt engineering is a promising al-
ternative to prompt handcrafting for knowledge
extraction in LMs (Liu et al., 2021a), as prompts
engineered using discrete (Jiang et al., 2020b;
Shin et al., 2020; Haviv et al., 2021) and continu-
ous (Zhong et al., 2021; Qin and Eisner, 2021; Liu
et al., 2021b) optimization have improved LMs’
lower-bound performance on LAMA’s underlying
queries. Note, however, that optimized prompts
are not always grammatical or intelligible (Shin
et al., 2020). Prompt optimization methods may
also confound knowledge probes by overfitting
to the probes’ answer distributions during train-



ing (Zhong et al., 2021; Cao et al., 2021), and often
require large validation sets for tuning, which may
not be feasible in practice (Perez et al., 2021).

Adversarial modification of LAMA prompts has
uncovered weaknesses in pretrained LMs’ world
“knowledge,” for example that BERT’s accuracy
drops precipitously when irrelevant statements or
negation words are added to prompts (Kassner and
Schütze, 2020; Lin et al., 2020; Petroni et al., 2020),
and that it can “guess” answers using shallow lex-
ical cues or benchmark artifacts (Poerner et al.,
2020; Cao et al., 2021). However, the adversarial
robustness of LM knowledge improves greatly with
supervision in both the pretraining (Petroni et al.,
2020) and fine-tuning (Kassner and Schütze, 2020)
stages, suggesting that explicit KB-level supervi-
sion is a viable remedy to input sensitivity.

Several collections of prompt variations, includ-
ing paraphrased sets of base prompts (Elazar et al.,
2021; Heinzerling and Inui, 2021) and multilingual
sets of base (English) prompts (Jiang et al., 2020a;
Kassner et al., 2021) have been released to expand
the original research questions posed by LAMA.
For the former, it has been found that pretrained
BERT-based LMs typically do not output consis-
tent answers for prompt paraphrases, although their
consistency can again be greatly improved by tar-
geted pretraining (Elazar et al., 2021; Heinzerling
and Inui, 2021). For the latter, initial results on
prompts beyond English indicate high variability
in pretrained LM performance across languages
and poor performance on prompts with multi-token
answers (Jiang et al., 2020a; Kassner et al., 2021).

Prompts generated with symbolic rules have
been used to test pretrained LMs’ abilities to learn,
e.g., equivalence, implication, composition, and
conjunction. Existing studies vary the degrees of
experimental control: Talmor et al. (2020a) use
BERT-based models with their publicly-available
pretrained weights, whereas Kassner et al. (2020)
pretrain BERT from scratch on synthetic KB triples
only. Both studies observe mixed results, conclud-
ing that word-level pretraining alone (at least on
BERT) does not lead to strong “reasoning” skills.

3.2 Statement scoring

Beyond probing, pretrained LM “knowledge” can
be purposed toward downstream KB-level tasks in
a zero-shot manner via statement scoring. Here, a
pretrained LM is fed natural language statements

corresponding to KB triples, and its token proba-
bilities across each statement are pooled to yield
statement scores. These scores are then treated
as input to a downstream decision, mirroring the
way that supervised LMs can be trained to out-
put probabilities for triple-level prediction tasks
(§ 5). We categorize statement scoring strategies
as single- or dual-LM approaches. The single-LM
approach pools the pretrained LM’s token scores
over a candidate set of sequences, then takes the
highest-scoring sequence as the LM’s “prediction”
or choice (Tamborrino et al., 2020; Bouraoui et al.,
2020; Zhou et al., 2020; Brown et al., 2020). The
dual-LM framework first uses one pretrained LM
to generate useful context (e.g., clarification text)
for the task, then feeds this context to another,
possibly different pretrained LM to obtain a final
score (Davison et al., 2019; Shwartz et al., 2020).

Both categories have shown promise over com-
parable unsupervised (and, under some conditions,
supervised) methods for tasks like multiple-choice
QA (Tamborrino et al., 2020; Shwartz et al., 2020;
Brown et al., 2020) and commonsense KB comple-
tion (Davison et al., 2019). However, LM scores
have also shown to be sensitive to small perturba-
tions in text (Zhou et al., 2020), so this approach
may be less effective on noisy or long-tail inputs.

3.3 Summary and outlook

There is still broad disagreement over the nature of
acquired “knowledge” in pretrained LMs. Whereas
some studies suggest that word-level pretraining
may be enough to endow LMs with KB-like knowl-
edge (Petroni et al., 2019; Tamborrino et al., 2020),
in particular given enough parameters and the right
set of prompts (Brown et al., 2020), others con-
clude that such pretraining alone does not yield suf-
ficiently precise or robust LM knowledge (Elazar
et al., 2021; Cao et al., 2021)—directly motivating
the targeted supervision strategies discussed in the
remainder of this paper. We observe that differ-
ent studies independently set objectives for what a
pretrained LM should “know,” and thus naturally
reach different conclusions. We believe that future
studies must reach consensus on standardized tasks
and benchmarks, addressing questions like: What
degree of overlap between a pretraining corpus and
a knowledge probe is permissible, and how can
this be accurately uncovered and quantified? What
lexical cues or correlations should be allowed in
knowledge probes? Progress in this direction will



Table 2: Taxonomy and representative examples of entity-level supervision in LMs, with evaluation tasks that
have been conducted in the referenced papers. Glossary of evaluation tasks: KP—knowledge probing; EL—entity
linking; ET—entity typing; RC—relation classification; QA—question answering; GL—the General Language
Understanding Evaluation or GLUE benchmark (Wang et al., 2019), which covers multiple subtasks.

Entities as... Supervision strategy Representative examples Evaluation task(s)
KP EL ET RC QA GL

Token mention-spans (§ 4.1)
Masked token prediction (Roberts et al., 2020; Guu et al., 2020) 3

Contrastive learning (Xiong et al., 2020; Shen et al., 2020) 3 3 3

Text-to-KB links—late fusion (§ 4.2)
Linking w/o external info (Broscheit, 2019; Ling et al., 2020) 3 3

Linking w/ textual metadata (Wu et al., 2020; De Cao et al., 2021) 3 3 3

Linking w/ external embeddings (Zhang et al., 2019; Chen et al., 2020) 3 3 3 3

Text-to-KB links—mid/early fusion (§ 4.3)
Entity embedding retrieval (Peters et al., 2019; Févry et al., 2020) 3 3 3 3 3

Treating entities as tokens (Yamada et al., 2020; Poerner et al., 2020) 3 3 3 3 3

not only further our understanding of the effects of
word-level supervision on LM knowledge acquisi-
tion, but will also provide appropriate yardsticks
for measuring the benefits of targeted entity- and
relation-level supervision.

4 Entity-level supervision

We next review entity-level supervision strategies
for LMs, most often toward improving perfor-
mance in knowledge probes like LAMA (§ 3.1)
and canonical NLP tasks like entity typing, entity
linking, and question answering. We roughly cate-
gorize approaches from “least symbolic” to “most
symbolic.” On the former end of the spectrum, the
LM is exposed to entity mentions in text but not
required to link these mentions to an external entity
bank (§ 4.1). On the latter end, the LM is trained
to link mentions to the KB using late (§ 4.2) or
mid-to-early fusion approaches (§ 4.3). Table 2
provides a taxonomy of supervision strategies for
this section with representative examples.

4.1 Modeling entities without linking

The “least symbolic” entity supervision approaches
that we consider input textual contexts containing
entity mention-spans to the LM, and incorporate
these mention-spans into their losses. However,
they do not require the LM to link these mentions
to the KB’s entity set, so the LM is never directly
exposed to the KB. Figures 3a and 3b provide exam-
ples of input and output for this class of approaches.

Masking tokens in mention-spans and training
LMs to predict these tokens may promote knowl-
edge memorization (Sun et al., 2020). Roberts et al.
(2020) investigate this strategy using a simple mask-
ing strategy whereby an LM is trained to predict
the tokens comprising named entities and dates in
text (Figure 3a, originally proposed by Guu et al.,
2020). The authors find that the largest (11 billion

parameter) version of T5 generates exact-match
answers on open-domain question answering (QA)
benchmarks with higher accuracy than extractive
systems—even without access to external context
documents, simulating a “closed-book” exam.

Contrastive learning techniques, which have been
used for LM supervision at the word and sentence
level (Devlin et al., 2019), have also been devised
for supervision on entity mentions (Shen et al.,
2020). For example, Xiong et al. (2020) replace
a proportion of entity mentions in the pretraining
corpus with the names of negatively-sampled en-
tities of the same type, and train an LM to predict
whether the entity in the span has been replaced
(Figure 3b). Although the previously discussed
closed-book T5 model (Roberts et al., 2020) out-
performs Xiong et al. (2020)’s open-book BERT
pretrained with contrastive entity replacement on
open-domain QA, the latter may generalize better:
T5’s performance degrades considerably for facts
not observed during training, whereas open-book
approaches appear more robust (Lewis et al., 2021).

4.2 Linking with late fusion

The next-strongest level of entity supervision is
to train the LM to link entity-centric textual con-
texts to a KB’s entity set E. Here, we cover late
fusion approaches, which operate at the word level
in terms of input to the LM and incorporate en-
tities at the LM’s output layer only, as exempli-
fied in Figure 3c. The simplest representatives
of this category train LMs to match individual to-
kens (Broscheit, 2019) or mentions (Ling et al.,
2020) in a text corpus to an entity bank, without any
external resources. The minimally “entity-aware”
BERT proposed by Broscheit (2019), which adds
a single classification layer on top of a pretrained
BERT encoder, achieves competitive results with a
state-of-the-art specialized entity linking architec-



(a) Mention-span masking (b) Contrastive learning (c) Linking—late fusion (d) Linking—early fusion

Figure 3: Examples of entity-level supervision in LMs, ranging from “less symbolic” to “more symbolic.”

ture (Kolitsas et al., 2018).

Entity meta-information such as names and de-
scriptions are viable external resources for LM-
powered entity linking (Botha et al., 2020). For
example, in zero-shot entity linking (Logeswaran
et al., 2019), textual mentions must be linked to
entities unseen during training using only entity
descriptions as additional data. Here, competi-
tive solutions train separate BERT models to se-
lect and rank candidate entities by encoding their
descriptions (Logeswaran et al., 2019; Wu et al.,
2020). More recently, encoder-decoder LMs have
been trained to retrieve entities by generating their
unique names (De Cao et al., 2021), which has the
advantage of scaling with the LM’s vocabulary size
(usually tens of thousands) instead of the KB entity
set size (potentially tens of millions). De Cao et al.
(2021) achieve results competitive to discriminative
approaches on entity linking and QA, suggesting
the potential of generative entity-aware LMs.

External entity embeddings pretrained by a sepa-
rate model have been used as strong sources of in-
ductive bias for LMs. For example, several variants
of BERT further pretrain the base model by linearly
fusing external entity embeddings with contextual
word representations at the output of the BERT en-
coder (Zhang et al., 2019; He et al., 2020). BERT
has also been fine-tuned to match its output token
representations to external entity embeddings for
the task of end-to-end entity linking (Chen et al.,
2020). Such approaches rely heavily on the qual-
ity of the externally-learned embeddings, which is
both a strength and a drawback: Such embeddings
may contain useful implicit structural information
about the KB, but on the other hand may propagate
errors into the LM (Shen et al., 2020).

4.3 Linking with middle or early fusion

The last and strongest category of entity supervi-
sion techniques that we consider are also linking-

based, but fuse entity information at earlier stages
of text encoding. Mid-fusion approaches retrieve
external entity representations in between hidden
layers and re-contextualize them into the LM,
whereas early fusion approaches simply treat entity
symbols as tokens in the vocabulary. Figure 3d pro-
vides an example of input/output for early fusion.

Retrieving entity embeddings and integrating
them into an LM’s hidden word representations
is a middle-fusion technique that has the advantage
of modeling flexibility: It allows the practitioner
to choose where (i.e., at which layer) the entity
embeddings are integrated, and how the entity em-
beddings are learned and re-contextualized into
the LM. Peters et al. (2019) integrate externally
pre-trained, frozen entity embeddings into BERT’s
final hidden layers using a word-to-entity attention
mechanism. Févry et al. (2020) learn the external
entity embeddings jointly during pretraining, and
perform the integration in BERT’s earlier hidden
layers using an attention-weighted sum. The lat-
ter approach is competitive with a 30× larger T5
LM in closed-book QA (§ 4.1), suggesting that
LMs and KB embeddings can be trained jointly to
enhance and complement each other.

Treating entities as “tokens” by appending spe-
cial reserved entity symbols to the LM’s vocab-
ulary is the earliest of entity fusion approaches
(Figure 3d). For instance, Yamada et al. (2020)
input entity “tokens” alongside textual contexts
that mention these entities to RoBERTa, and use
specialized word-to-entity and entity-to-entity at-
tention matrices within its hidden layers. Other ap-
proaches leave the base LM’s internal architecture
completely unchanged and focus only on aligning
the LM’s word and entity embedding spaces at the
input level (Rosset et al., 2020; Poerner et al., 2020).
Note, however, that this approach may significantly
enlarge the LM’s vocabulary. For example, plain
BERT’s vocabulary is around 30k tokens, whereas



Table 3: Taxonomy and representative examples of relation-level supervision in LMs, with evaluation tasks con-
ducted in the respective referenced papers. Glossary of evaluation tasks: KP—knowledge probing; ET—entity
typing; RC—relation classification; QA—question answering; CR—compositional reasoning; KC—knowledge
base construction; TG—text generation; GL—the GLUE family of language tasks (Wang et al., 2019).

Relations as... Supervision strategy Representative examples Evaluation task(s)
KP ET RC QA CR KC TG GL

Templated sentences (§ 5.1)
Lexicalizing triples (Thorne et al., 2021; Guan et al., 2020) 3 3 3

Lexicalizing paths (Clark et al., 2020; Talmor et al., 2020a,b) 3 3

Linearized sequences (§ 5.2)
Training on triple sequences (Yao et al., 2019; Agarwal et al., 2021) 3 3 3 3

Injecting triples into text (Liu et al., 2020) 3

Dedicated embeddings (§ 5.3)
Pooling entity representations (Baldini Soares et al., 2019; Qin et al., 2021) 3 3 3

Embedding relations externally (Wang et al., 2021d; Daza et al., 2021) 3 3 3 3

Treating relations as tokens (Bosselut et al., 2019; Hwang et al., 2021) 3

English Wikipedia has around 6 million entities.
This can make pretraining on a larger vocabulary
expensive in terms of both time and memory us-
age (Yamada et al., 2020; Dufter et al., 2021).

4.4 Summary and outlook
The literature on entity supervision in LMs is
growing rapidly. In line with recent trends in
NLP (Khashabi et al., 2020), a growing number
of entity supervision strategies use generative mod-
els (Roberts et al., 2020; De Cao et al., 2021),
which are attractive because they allow for a high
level of flexibility in output and circumvent the
need for classification over potentially millions of
entities. However, some studies find that generative
models currently do not perform well beyond what
they have memorized from the training set (Wang
et al., 2021b; Lewis et al., 2021). These findings
suggest that storing some entity knowledge exter-
nally (e.g., in a dense memory, Févry et al., 2020)
may be more robust, for example by allowing for ef-
ficient updates to the LM’s knowledge (Verga et al.,
2020). We believe that future work will need to
analyze the tradeoffs between fully-parametric and
retrieval-based entity modeling in terms of pure
accuracy, parameter and training efficiency, and
ability to generalize beyond the training set.

5 Relation-level supervision

Finally, we consider methods that utilize KB triples
or paths to supervise LMs for complex, often com-
positional tasks like relation classification, text gen-
eration, and rule-based inference. We again orga-
nize methods in the order of less to more symbolic.
In this context, less symbolic approaches treat
triples and paths as fully natural language (§ 5.1,
5.2). By contrast, more symbolic approaches learn
distinct embeddings for relation types in the KB
(§ 5.3). Table 3 provides a taxonomy of this section
with representative examples and evaluation tasks.

5.1 Relations as templated assertions

Template-based lexicalization is a popular relation
supervision strategy that does not directly expose
the LM to the KB. Similar to how KB queries are
converted to cloze prompts for knowledge prob-
ing (§ 3.1), triples are first converted to natural
language assertions using relation templates, usu-
ally handcrafted. These assertions are then fed as
input to the LM, which is trained with any num-
ber of task-specific losses. Figure 4 provides an
input/output example for this class of approach.

Lexicalized triples from Wikidata have been used
as LM training data in proof-of-concept studies
demonstrating that LMs can serve as natural lan-
guage querying interfaces to KBs under controlled
conditions (Heinzerling and Inui, 2021). A promis-
ing approach in this direction uses encoder-decoder
LMs to generate answer sets to natural language
queries over lexicalized Wikidata triples (Thorne
et al., 2020, 2021), toward handling multi-answer
KB queries with LMs—thus far an understudied
task in the LM knowledge querying literature.

Other approaches convert KB triples to sentences
using relation templates in order to construct task-
specific training datasets for improved performance
in, e.g., story generation (Guan et al., 2020), com-
monsense QA (Ye et al., 2020; Ma et al., 2021),
and relation classification (Bouraoui et al., 2020).
While most of these approaches rely on template
handcrafting, a few automatically mine templates
using distant supervision on Wikipedia, achieving
competitive results in tasks like relation classifi-
cation (Bouraoui et al., 2020) and commonsense
QA (Ye et al., 2020).

Compositional paths spanning multiple atoms of
symbolic knowledge may also be lexicalized and
input to an LM (Lauscher et al., 2020; Talmor
et al., 2020a) in order to train LMs for soft com-



Figure 4: Strategies for representing relations as se-
quences: Templating (§ 5.1) and linearization (§ 5.2).

positional reasoning (Clark et al., 2020; Talmor
et al., 2020b). Notably, when RoBERTa is fine-
tuned on sentences expressing (real or synthetic)
facts and rules from a KB, it can answer entailment
queries with high accuracy (Clark et al., 2020; Tal-
mor et al., 2020b). However, as Clark et al. (2020)
note, these results do not necessarily confirm that
LMs can “reason,” but rather that they can at least
emulate soft reasoning—raising an open question
about how to develop probes and metrics to verify
whether LMs can actually reason compositionally.

5.2 Linearizing KB triples

The main advantage of templating is that it con-
verts symbolic triples into sequences, which can
be straightforwardly input to LMs. However, hand-
crafting templates is a manual process, and distant
supervision can be noisy. To maintain the advan-
tage of templates while avoiding the drawbacks,
triples can alternatively be fed to an LM by lineariz-
ing them—that is, flattening the subject, relation,
and object into an input sequence (Figure 4). With
linearization, relation-level supervision becomes
as simple as feeding the linearized sequences
to the LM and training again with task-specific
losses (Yao et al., 2019; Kim et al., 2020; Ribeiro
et al., 2020; Wang et al., 2021a) or injecting the
sequences into the pretraining corpus (Liu et al.,
2020). A notable recent example of the former
approach (Agarwal et al., 2021) trains T5 on lin-
earized Wikidata triples in order to generate fully
natural language versions of those triples. These
verbalized triples are used as retrieval “documents”
for improved LM-based QA over traditional doc-
ument corpora; note, however, that they can also
be used as LM training data for other downstream
tasks in place of handcrafted templates (§ 5.1).

5.3 Relations as dedicated embeddings

The strategies discussed thus far treat KB triples
and paths as natural language sequences. A “more

symbolic” approach is to represent KB relation
types with dedicated embeddings, and integrate
these embeddings into the LM using late, middle,
or early fusion approaches. Figures 5a and 5b pro-
vide input/output examples for late fusion, whereby
relation textual contexts are input to the LM, and
relation embeddings are constructed or integrated
at the LM’s output. Figure 5c exemplifies early fu-
sion, whereby relations are treated as input tokens.

Contextual representations of entity mention-
spans may be pooled at an LM’s output layer to
represent a relation (Wang et al., 2021c; Yu et al.,
2020). For example, Baldini Soares et al. (2019)
concatenate the contextual representations of spe-
cial entity-start markers inserted adjacent to textual
entity mentions, and fine-tune BERT to output sim-
ilar relation representations for statements ranging
over the same entity pairs (Figure 5a). This ap-
proach, which proved highly successful for relation
classification, has been applied to the same task
in languages beyond English (Köksal and Özgür,
2020; Ananthram et al., 2020), and as an additional
LM pretraining objective (Qin et al., 2021).

Non-contextual relation embeddings may be
learned by defining a separate relation embedding
matrix with |R| rows and fusing this matrix into
the LM. One advantage of this approach, similar
to methods for retrieving external entity embed-
dings (§ 4.3), is that it supports fusion at both the
late (Wang et al., 2021d; Daza et al., 2021) and
middle (Liu et al., 2021c) stages. As an exam-
ple of the former, Wang et al. (2021d) propose
an LM pretraining objective whereby textual de-
scriptions of KB entities are input to and encoded
by an LM, then combined with externally-learned
relation embeddings at the output using a link pre-
diction loss (Figure 5b). Combined with standard
word-level language modeling objectives, this ap-
proach enables generalization across both sentence-
level tasks like relation classification, and graph-
level tasks like KB completion.

Treating relations as “tokens,” toward early fu-
sion of relations in LMs, is achieved by append-
ing the KB’s relation types to the LM’s vocabu-
lary (Figure 5c). A notable instantiation of this
approach is the COMET commonsense KB con-
struction framework (Bosselut et al., 2019; Hwang
et al., 2021; Jiang et al., 2021). Given a subject
phrase/relation token as input, COMET fine-tunes
an LM to generate object phrases. COMET demon-



(a) Late fusion—pooling (b) Late fusion—external embeddings (c) Early fusion—relations as “tokens”

Figure 5: Examples of relation supervision strategies that incorporate dedicated embeddings of relation types.

strates promising improvements over 400× larger
LMs not trained for KB construction (Hwang et al.,
2021). However, templating (§ 5.1) may yield bet-
ter results than adding special tokens to the vocab-
ulary when the COMET framework is trained and
tested in a few-shot setting (Da et al., 2021).

5.4 Summary and outlook

Relation-level supervision in LMs is exciting be-
cause it enables a wide variety of complex NLP
tasks (Table 3). A unifying theme across many of
these tasks is that of compositionality, or the idea
that smaller “building blocks” of evidence can be
combined to arrive at novel knowledge. As compo-
sitionality is thought to be key to machine general-
ization (Lake et al., 2017), we believe that further
fundamental research in understanding and improv-
ing LMs’ soft “reasoning” skills (Clark et al., 2020;
Talmor et al., 2020b, § 5.1) will be crucial.

Finally, while most of the open directions we dis-
cuss involve improving LM knowledge with KBs,
we find the direction of generating KBs with LMs
equally intriguing—reflecting the fact that LMs
and KBs can complement each other in “both direc-
tions,” as automating and scaling out the construc-
tion of KBs will ultimately provide LMs with more
relational training data. The generative COMET
framework (Bosselut et al., 2019, § 5.3) has made
inroads in commonsense KB construction, but the
same progress has not yet been observed for en-
cyclopedic knowledge. The latter entails unique
challenges: Whereas commonsense entities are not
disambiguated and triples need only be plausible
rather than always true, encyclopedic entities are
usually disambiguated and facts are often binary
true/false. We look forward to future research that
addresses these challenges, perhaps building on
recent breakthroughs in generative factual entity
retrieval (De Cao et al., 2021, § 4.2).

6 Conclusion and vision

In this review, we provide an overview of how LMs
may acquire relational world knowledge during
pretraining and fine-tuning. We propose a novel
taxonomy that classifies knowledge representation
methodologies based on the level of KB supervi-
sion provided to an LM, from no explicit supervi-
sion at all to entity- and relation-level supervision.

In the future, we envision a stronger synergy
between the perspectives and tools from the lan-
guage modeling and knowledge bases communities.
In particular, we expect powerful and expressive
LMs, which are actively being developed in NLP,
to be increasingly combined with large-scale KB
resources to improve their knowledge recall and
reasoning abilities. On the converse, we expect
such KB resources to be increasingly generated di-
rectly by LMs. Within both of these directions, we
hope that future work will continue to explore the
themes discussed in this paper, in particular that
of delineating and testing KB-level memorization
versus generalization in LMs. We also expect that
more standardized benchmarks and tasks for evalu-
ating LM knowledge will be developed, a direction
that has recently seen some progress (Petroni et al.,
2021). As research at the intersection of LMs and
KBs is rapidly progressing, we look forward to
new research that better develops and combines the
strengths of both knowledge representations.
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