
Knowledge and Information Systems
https://doi.org/10.1007/s10115-018-1293-8

REGULAR PAPER

Fast network discovery on sequence data via time-aware
hashing

Tara Safavi1 · Chandra Sripada2 · Danai Koutra1

Received: 21 December 2017 / Revised: 3 October 2018 / Accepted: 24 November 2018
© Springer-Verlag London Ltd., part of Springer Nature 2018

Abstract
Discovering and analyzing networks from non-network data is a task with applications
in fields as diverse as neuroscience, genomics, climate science, economics, and more. In
domains where networks are discovered on multiple time series, the most common approach
is to compute measures of association or similarity between all pairs of time series. The
nodes in the resultant network correspond to time series, which are linked by edges weighted
according to the association scores of their endpoints. Finally, the fully connected network
is thresholded such that only the edges with stronger weights remain and the desired sparsity
level is achieved. While this approach is feasible for small datasets, its quadratic (or higher)
time complexity does not scale as the individual time series length and the number of com-
pared series increase. Thus, to circumvent the inefficient and wasteful intermediary step of
building a fully connected graph before network sparsification, we propose a fast network dis-
covery approach based on probabilistic hashing. Our methods emphasize consecutiveness,
or the intuition that time series following similar fluctuations in longer time-consecutive
intervals are more similar overall. Evaluation on real data shows that our method can build
graphs nearly 15 times faster than baselines (when the baselines do not run out of memory),
while achieving accuracy comparable to, or better than, baselines in task-based evaluation.
Furthermore, our proposals are general, modular, and may be applied to a variety of sequence
similarity search tasks.

Keywords Network discovery · Brain networks · Networks · Hashing · LSH · Time series ·
Sequences · Knowledge discovery

1 Introduction

Prevalent among data in the natural, social, and information sciences are graphs or networks,
which are data structures consisting of entities (nodes) and connections among those entities
(edges). In some cases, graphs are directly observed, as in the well-studied example of online

B Tara Safavi
tsafavi@umich.edu

1 Computer Science and Engineering, University of Michigan, Ann Arbor, USA

2 Psychiatry and Philosophy, University of Michigan, Ann Arbor, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10115-018-1293-8&domain=pdf
http://orcid.org/0000-0002-3553-4331
http://orcid.org/0000-0002-3206-8179

T. Safavi et al.

Fig. 1 Scalable network discovery. In step 2, we circumvent all-pairs similarity computations and instead only
compare series that are likely similar

social networks,where nodes represent users and edges represent a variety of user interactions
like friendship or comments. However, graphs may also be constructed from non-network
data, a task of interest across diverse domains, which allows for powerful graph methods and
tools to be readily applied toward analysis of other types of data. Network discovery on time
series data in particular has many applications. For example, a common task in neuroscience
is to convert a set of time series obtained via fMRI (functional magnetic resonance imaging)
into a network [8,13]. Such a “network” is then used to model and analyze pairwise activity
correlations among regions in the brain, ultimately for the goal of understanding brain pro-
cesses like maturation and disease. Stock market time series correlation networks have also
been inferred and analyzed [34]. Even “social networks” among animals may be inferred
via observed co-locations or interactions over time [7]. In these fields, practitioners seek
network-related insights from data that do not directly represent networked interactions. In
these settings, discovered networks, which are also sometimes called association or correla-
tion networks, connect pairs of time series (nodes) according to their pairwise similarity or
association strengths.

Motivated by the growing need for scalable data analysis, we address the problem of
efficient network discovery on many time series (Fig. 1):

Problem 1 (Efficient network discovery on time series (informal)) Given N univariate time
series X = {x(1), . . . , x(N)}, efficiently construct a sparse similarity graph that captures the
strong associations (edges) between pairs of time series or sequences (nodes).

Traditional network discovery on time series suffers from the simple but serious drawback
of scalability. The established technique for building a graph out of N time series is to
compare all pairs of series, forming a fully connected graph where nodes are time series
and edges are weighted proportionally to the computed similarity or association of the nodes
they connect. Afterward, the network is sparsified such that only the stronger associations,
or edges with weight above a certain threshold, remain. This “all-pairs” method is at least
an �(N 2) operation depending on the complexity of the time series similarity measure,
which makes the process computationally inefficient on anything other than small datasets.
For example, to generate even a small graph of five thousand nodes, about 12.5 million
comparisons are required, where each comparison itself is at least linear in the time series
length: the popular Euclidean distance and correlation measures are linear, and the dynamic
time warping (DTW) distance measures are slower yet, adding an extra runtime factor as the
series length increases. Furthermore, the network may eventually lose most of its edges via
thresholding before further analysis, rendering many of the original comparisons wasteful.

We propose to circumvent the bottleneck of the established network discovery approach,
all-pairs sequence comparison, by introducing a new locality-sensitive hashing method that
quickly identifies series with similar time-consecutive fluctuations. In our approach, we first
compute a compact randomized signature for each time series, then hash all series with the
same signature to the same “bucket” such that only the intra-bucket pairwise similarity scores
need be computed.

123

Fast network discovery on sequence data via time-aware hashing

Contributions Our main contributions are as follows:

– Novel sequence similarity measure and corresponding metric Motivated by the pop-
ularity of correlation as an association measure, we propose ABC, a novel, intuitive,
and generalizable time series similarity measure. Our similarity measure, ABC, captures
time-consecutive matching fluctuations between time series. To use ABC in conjunction
with locality-sensitive hashing (LSH), which requires a distance metric to provide the-
oretical guarantees on the similarity search process (Sect. 5), we show that ABC has a
corresponding distance metric. To the best of our knowledge, ABC is the first similarity
measure that both quantifies consecutiveness in time series trends and has a corresponding
metric.

– Network discovery via locality-sensitive hashing Using the theoretical foundations of
ABC, we introduce a new family of LSH hash functions, ABC-LSH. We show how the
false positive and negative rates of the randomized hashing process can be controlled in
network discovery.

– Evaluation on real data We evaluate the efficiency, accuracy, and robustness of our
proposals. To evaluate accuracy, we rely on domain knowledge from neuroscience, an
area of active research on discovered networks. The graphs built by our ABC variants
are created up to 15 times faster than baselines, while performing as well or better in
classification-based evaluation.

Outline The remainder of this work is organized as follows: In Sect. 2, we review related
work in network discovery and similarity search. Section 3 gives a high-level overview of the
problem and our proposed solution. In Sect. 4, we detail our proposed similarity measure,
ABC, and in Sect. 5 we use ABC to design a new locality-sensitive hashing family, ABC-
LSH.We review our proposals in Sect. 6 and enumerate and analyze our experimental results
in Sect. 7. Finally, we conclude with discussions of our work in Sects. 8 and 9.

2 Related work

We briefly review the related literature in network structure discovery, nearest-neighbor
search, and locality-sensitive hashing. In summary, while problems tangential to our
addressed task have been explored, some to a greater degree than others, to the best of
our knowledge efficient network discovery on time series with locality-sensitive hashing has
not been explored.

2.1 Network discovery

The field of network discovery or network inference concerns constructing network repre-
sentations from indirect, possibly noisy measurements with unobserved interactions [7]. For
example, functional connectivity, which models the brain as a network constructed from
functional magnetic resonance imaging (fMRI), is an area of intense recent interest in neuro-
science [8]. The goal of functional connectivity is to identify network-theoretical properties,
like the network clustering coefficient or average path length, that indicate brain health, dis-
ease, or development. Similarly, network discovery is of interest in other domains that collect
data via monitoring or sensors, like genomics, climate science, finance, transportation, and
ecology. Suchdiscoverednetworks serve a variety of knowledgediscovery tasks, like anomaly
detection [1], summarization [30,39], prediction [32], inference and similarity [25,26,41].

123

T. Safavi et al.

Typically, practitioners in these domains infer interaction networks using direct measures
of association like correlation. However, recently there has been increased interest in inferring
(potentially time-varying) graphical models from multivariate data using lasso regulariza-
tion [16,42]. These approaches assume that the data follow a k-variate normal distribution
N (0, �), where k is the number of parameters and � is the covariance of the distribution.
While recent work focuses on scaling this approach, we tackle efficient network discovery
without distributional assumptions on the edges of the discovered network.

The related field of graph signal processing (GSP) addresses graph representations of
high-dimensional signal data [40]. As GSP involves constructing association networks from
signal data, its output is the same as network discovery. However, GSP’s focus is not on
the efficiency or structural evaluation of discovered networks. Rather, its goal is to extend
traditional signal processing tools, like signal filtering and transformations, to graphs.

2.2 Nearest-neighbor search

The problem of finding nearest neighbors has been addressed from several perspectives. In
a k-nearest-neighbor (k-NN) graph, each node is connected via a directed edge to the top k
most similar other nodes in the graph. Some techniques proposed to improve the quadratic
runtime of traditional k-NN graph construction include local search algorithms and hashing
[6,14,44]. However, limiting the number of neighbors per node is an unintuitive task in our
case. For this reason, our proposed method lets the hashing process determine which pairs of
nodes are connected.Moreover, the output data structure of k-NN graph discovery algorithms
fundamentally differs from ours, as we seek to discover an undirected, weighted graph.

Related is the problem of the ε-nearest-neighbor (ε-NN) graph, in which all node pairs
above a similarity score ε are connected via undirected edges. The ε-NN graph is a variant
of the well-studied set similarity self-join problem [6,10], which seeks to identify all pairs of
objects above a user-set similarity threshold. While there has been significant work in speed-
ing up this approach, we again make a case against thresholding as a central step in network
discovery. Indeed, practitioners in domains like neuroscience have noted that the (potentially
ad-hoc) choice of threshold can significantly affect the resultant graph structure [5]. There-
fore, we seek to analyze the output network’s connectivity patterns and strengths without
hard-to-define edge-weight thresholds. Although there has been recent advancement in scal-
able time series subsequence self-join without thresholding [43], such efforts find the nearest
neighbor of every subsequence in a given time series. Our network discovery task is neither
concerned with time series subsequences nor constrained to single nearest-neighbor search.

More recently, Scharwächter et al. [38] propose COREQ, a fast method for approximating
the full correlation matrix using triangular bounds. While the goal of COREQ is similar to
ours—avoiding computation of all N 2 correlations between time series—the key difference
is that we focus on efficiently computing only the strongest associations between time series
to yield a sparse network. By contrast, COREQ approximates all correlations, weak or strong,
between pairs of time series below a specified error threshold.

2.3 Locality-sensitive hashing

Locality-sensitive hashing (LSH) has been successfully employed in various settings, includ-
ing efficient discovery of similar documents and alignment of multiple networks [17]. Unlike
general hashing, which aims to avoid collisions between data points, LSH encourages colli-
sions between items such that colliding elements are similar with high probability [2]. LSH

123

Fast network discovery on sequence data via time-aware hashing

provides formal guarantees on the probability of false negatives and positives in approximate
similarity search given a distance metric (i.e., a distance measure that satisfies the triangle
inequality) and an associated family of LSH functions [28].We discussmore technical details
of LSH in Sect. 5.

A few general methods of hashing time series have been proposed, although neither for the
purpose of network discovery nor for capturing time-ordered similarity between time series
[21,23,24]. Most recently, random projections of sliding windows on time series have been
proposed for constructing approximate short hash signatures [31]. However, this approach
uses dynamic timewarping (DTW)as ameasure of time series distance.WhileDTWandother
nonlinear alignment schemes have the advantage of matching similarly shaped time series
out of phase in the time axis, and may empirically work well with hashing, such measures
cannot be metrics by definition [33]. Therefore, we do not consider these measures. Without
a metric, we lack the theoretical foundation for true LSH and cannot provide guarantees on
false positive and negative rates.

3 Overview of problem and approach

The problem we address is given as:

Problem 2 (Multiple time series to weighted graph) Given N time series
X = {x(1), . . . , x(N)}, construct a sparse similarity graph where each node corresponds
to a time series x(i) and each edge is weighted according to the association of the nodes
(x(i), x(j)) it connects.

As previously stated, traditional network discovery on time series is quadratic in the num-
ber of time series N . Its total complexity also depends on the chosen similarity measure. We
thus propose a modular three-step approach that circumvents the costly all-pairs comparison
step (Fig. 2):

1. Preprocess time series First, the input real-valued time series are approximated as binary
sequences to capture just their fluctuations.

2. Hash binary sequences to bucketsNext, the binary sequences are hashed to short, random-
ized signatures in a “time-aware” fashion. To achieve this, we define a novel similarity
measure, ABC, that quantifies time-consecutive similarity in sequences. Beyond being
qualitatively comparable to correlation, ABC is theoretically eligible for LSH, as it has
a corresponding distance metric. It also addresses some shortcomings of pointwise com-
parison measures, which we illustrate in Sect. 4. We show that ABC’s complementary
distance measure is a metric, and use this result to design an LSH family tailored to
capturing time-consecutive similarity.

Fig. 2 Proposed network discovery method, ABC-LSH. The output of step 3 is a graph in which edges are
weighted according to node (time series) similarity

123

T. Safavi et al.

3. Compute intra-bucket pairwise similarity The similarity between each pair of time series
that hash to the same signature, or bucket, is computed. A weighted edge is created
between each pair of colliding time series.

The output of this process is a graph in which all pairs of time series that collide in
any round of hashing are connected by an edge weighted according to their similarity. For
reference, we define our major symbols in Table 1.

4 ABC: quantifying time-consecutive similarity

Themotivation behind our proposed measure, ABC, is that capturing similarity via pointwise
agreement—for example, Euclidean distance or other popular measures—can be ineffective,
especially when combined with approximate similarity search techniques like hashing. As
shown in Fig. 3, agreement between two series in t randomly scattered timesteps does not
always capture true similarity in trends. By contrast, two series following the same pattern
of fluctuations in t consecutive timesteps are arguably more associated. As Iglesias and
Kastner [18] note, although Euclidean distance is often sufficient in time series data mining
applications, it is in principle invariant with respect to changes in time ordering among pairs
of time series and thus “blind” to capturing time-ordered similarity.

Example 1 Consider the three time series in Fig. 3. Here, the (z-normalized) time series x
and y are clearly more similar to each other than to z, which does not fluctuate at all within
the time window. However, the Euclidean distance scores are highest between x and y—in
other words, x and y are deemed the least similar—due to the nature of pointwise distance
comparison. By contrast, our ABC metric (Sect. 4.2) correctly assigns the lowest distance
score between x and y, as it quantifies the matching fluctuation trends between the series.
In doing so, it also “corrects” the small phase misalignment between x and y, although we
note that time series phase alignment is not the goal of ABC (see Sects. 2.3 and 8 for more
discussion).

Table 1 Major symbols

Symbol Definition

x A time series, or a sequence of n real values

X A set of N time series {x(1), . . . , x(N)}, each of length n

b(x) The binary approximation of a time series x

S(x, y) The maximum ABC similarity between two sequences

p The number of agreeing runs between two sequences

ki The length of the i-th agreeing run between two sequences

α The parameter upon which ABC operates; α controls the emphasis
on consecutiveness as a factor in similarity scoring

F A locality-sensitive family of hash functions

k The length of a window or subsequence of x

r The number of hash functions to AND with LSH

b The number of hash functions to OR with LSH

123

Fast network discovery on sequence data via time-aware hashing

Fig. 3 Capturing consecutiveness can yield better results. Although the time series x and y (top left) are the
most similar, the Euclidean distance pointwise comparison method fails to reflect this. Here, x and y are
assigned the highest Euclidean distance and thus the lowest similarity score. By contrast, our ABC metric,
computed here with α = 10−4, correctly assigns a much lower distance score to x and y

In the following sections, we outline preliminaries for ABC, define ABC similarity and
distance, and analyze some of ABC’s important properties. Finally, we generalize ABC to
other data types.

4.1 Preprocessing: time series representation

The first step in our pipeline converts raw, real-valued time series to binary, easily hashable
sequences. If the series are already discretized, this step can be skipped (Sect. 4.4).

In the data mining literature, several binarized representations of time series have been
proposed [3,22,36]. The one we use has been called the “clipped” representation of a time
series [36].

Definition 1 (Binarized representation of time series) Given a time series x ∈ R
n , the bina-

rized representation of the series b(x) replaces each real value xi , i ∈ [1, n], by a single bit
such that b(xi) = 1 if xi is above the series mean μx, and 0 otherwise.

We choose this representation because it captures key fluctuations in the time series—
which we want to compare, as correlation does—while providing an approximation suitable
for fast similarity search. In particular, LSH requires amethod of constructing hash signatures
of reduced dimensionality from input data points: this method depends on the similarity or
distance measure used to compare the data points. As we show in the following sections,
binarizing the time series naturally facilitates the construction of short, representative hash
signatures, while still retaining information naturally encoded in time. We demonstrate in
Sect. 7.4 that these benefits outweigh the loss of information in binarization. Binarizing the
time series enables fast network discovery via hashing while maintaining accuracy. We are
able to achieve comparable, or in some cases even better, accuracy than correlation with
binarized time series.

123

T. Safavi et al.

4.2 ABC: approximate binary correlation

Given binary sequences that approximate real-valued time series, we propose an intuitive and
simple measure of similarity and a complementarymetric (Sects. 5.1, 1) to quantify matching
consecutive fluctuations between pairs of series. To the best of our knowledge, ABC is the
first similarity measure with an associated metric that both explicitly quantifies consecutive
similarity and admits LSH (Sect. 5.2).

The intuition behind our proposed similarity measure, ABC or Approximate Binary Cor-
relation, is to count matching bits between two binarized time series x and y. In doing so,
we slightly exponentially weight consecutively agreeing bits in x and y such that the longer
the consecutive matching subsequences, which Balakrishnan and Koutras [4] call runs, the
more similar x and y are deemed.

More formally, we define ABC similarity as a summation of multiple geometric series,
which elegantly captures this intuition. For some 0 < α � 1, ABC adds (1 + α)i to the
total “similarity score” for every i-th consecutive element of agreement between the two
sequences, starting with i = 0 each time a new run begins. Thus, x and y’s similarity is a
sum of 1 ≤ p ≤ n

2 geometric series, each with a common ratio r = (1 + α) and a length
ki where k1 + · · · + ki + · · · + kp ≤ n. In practice, these matching subsequences can be
identified via a linear scan of x and y by keeping a counter variable that is reset before each
new run begins and incremented as matching bits are identified.

Definition 2 (ABC (ApproximateBinaryCorrelation) similarity)Given twobinary sequences
x, y ∈ {0, 1}n that have p matching consecutive subsequences i of length ki , the ABC
similarity is defined as

s(x, y) =
p∑

i=1

ki−1∑

b=0

(1 + a)b =
∑p

i=1 (1 + α)ki − p

α
(1)

where α ∈ (0, 1] controls the emphasis on consecutiveness: the higher the α, the higher this
emphasis. Above we use that the sum of a geometric progression is

∑n−1
b=0 r

b = 1−rn
1−r for

r �= 1.

Example 2 Consider x = 1101000 and y = 1111001 (Fig. 4a). We add (1+ α)0 for the first
bit of agreement and (1+ α)1 for the second bit of agreement. The series do not agree in the
third bit, so we resume increasing the total with the next agreeing bit, adding (1 + α)0 for
the fourth bit, (1 + α)1 for the fifth bit, and (1 + α)2 for the sixth bit. The total similarity
is s(x, y) = 1 + (1 + α) + 1 + (1 + α) + (1 + α)2. With α = 10−3, the ABC similarity is
s(x, y) = 1+1.001+1+1.001+1.0012 ≈ 5.004, which is slightly higher than the number
of agreeing bits in the series, as expected.

ABC distance We denote the maximum possible ABC similarity, which occurs when two
sequences are identical, as S(x, y). This value is the sum of a geometric progression from 0

Fig. 4 ABC similarity. In both examples, the ABC similarity between x and y is the sum of two geometric
series that encode length-2 and 3 runs, respectively

123

Fast network discovery on sequence data via time-aware hashing

to n−1with common ratio (1+α): S(x, y) = ∑n−1
i=0 (1+α)i = (1+α)n−1

α
. To normalize ABC

similarity within the range of 0 and 1, we can divide the observed ABC similarity between
two sequences x and y by S. In the example in Fig. 4, the similarity ratio is 5.004

7.002 ≈ 0.712.
The complementary ABC distance score d(x, y) is easily derived by subtracting the

observed similarity score s from the maximum similarity S. By this definition, identical
sequences have a distance of 0, and sequences with no agreeing bits have a distance of
S(x, y).

Definition 3 (ABC distance) Given two binary sequences x, y ∈ {0, 1}n that have pmatching
consecutive subsequences i of length ki , the ABC distance is defined as

d(x, y) = S(x, y) − s(x, y) =
∑p

i=1 (1 + α)ki + p − 1

α
(2)

4.3 Understanding ABC similarity

In this section, we further analyze our proposed similarity measure, ABC. We discuss how
to control its single parameter α and compare ABC to correlation, which is widely used as
an association measure in network discovery.
Choosing α We recommend choosing α with regard to two criteria. The first criterion is the
desired emphasis on consecutiveness in similarity scoring. For example, choosing α = 0
reduces the similarity score to the complement of Hamming distance. Increasing α both
increases the maximum similarity score S (Sect. 4.2) and the “gap” between pairs of series
that match in long consecutive runs versus shorter runs—for example, agreement in every
other timestep.

The second criterion is the length of the compared sequences. The longer the sequences,
the smaller α should be to avoid very large numbers in exponentiation. For example, for
time series of length 10, 000, choosing α = 10−5 results in a maximum exponent of
1.0000110000 ≈ 1.105 for two sequences in perfect agreement. By contrast, choosing
α = 10−3 results in a maximum exponent of 1.00110000 ≈ 21916.68 for the same two
sequences.
Comparison to correlation One of our objectives in designing ABC is to assign similarity
scores comparable to Pearson’s correlation coefficient, since the latter is the most common
association measure in network discovery on time series [8,27]. Intuitively, ABC is like
correlation in that it assigns higher similarity to pairs of series following similar trends,
which occurs when the series follow the same pattern over longer consecutive intervals.

To confirm that ABC is indeed similar to correlation, we compared Pearson’s correlation
coefficient to normalized ABC similarity with α = 10−4 on all pairs of time series in 10 brain
scans from the COBRE dataset (Sect. 7.1). We performed linear regression on all score pairs,
finding a strong linear relationship—on average, r = 0.84 with a p-value of 0—between the
correlation and normalized ABC scores (Fig. 5).

However, while we observe a strong relationship between ABC similarity and correlation,
the ABC similarity measure as given in Definition 2 does not take into account inversely cor-
related relationships as Pearson’s correlation coefficient does. In fact, our original definition
of ABC assigns low similarities to pairs of sequences that display anti-correlations, and a
similarity score of 0 to two complementary binary sequences—in other words, sequences
that are perfectly inversely correlated.

Some domains interested in network discovery take absolute-valued Pearson’s correlation
coefficient between time series as the network edge weights, thereby keeping both the strong

123

T. Safavi et al.

Fig. 5 Correlation versus ABC. Pearson’s correlation (x-axis) versus normalized ABC similarity (y-axis)
scores for all pairs of time series from three brain scans

positive and negative correlations [27]. To address this, we introduce a simple measure of
“anti-correlation” based on our previous definition of ABC similarity:

Definition 4 (Inverse ABC similarity) Given two binary sequences x, y ∈ {0, 1}n , the inverse
ABC similarity score is computed as given in Definition 2, but on disagreeing runs—
subsequences in which all bits differ—rather than agreeing runs.

Take the previous example in Fig. 4a. Sequences x and y only disagree in the third and
seventh bits, so their inverse ABC score is 2(1 + α)0 = 2.

In practice, we need not compute separate similarity scores for ABC and inverse ABC per
pair of sequences. It suffices to simply keep two running totals while scanning the sequences.
For each agreeing pair of bits, the ABC running total score increases as specified by Defini-
tion 2. For each disagreeing pair of bits, the inverse ABC total score increases as specified
by Definition 4.

4.4 Generalizing ABC

While we propose and evaluate ABC as a similarity measure operating on binary sequences,
ABC may in principle be applied to sequences of any data type given an indicator function
between elements xi in sequence x and yi in sequence y:

δxi yi =
{
1 if xi = yi
0 otherwise

This function outputs 1 if the corresponding sequence elements agree and 0 otherwise.

Example 3 Assuming time series input, one may wish to discretize the series using the well-
known SAX symbolic representation [29]. Given x = aadbcba and y = aabbcbb (Fig. 4b),
we can use δxi yi to exponentially weight consecutively matching symbols in the sequences.
As in our earlier example with binary sequences, we add (1+α)0 + (1+α)1 for the first two
agreeing symbols, then (1+α)0+(1+α)1+(1+α)2 for the fourth, fifth, and sixth symbols,
respectively. The total ABC similarity between x and y is s(x, y) = 2+2(1+α)+ (1+α)2.
Our window LSH family (Sect. 5.2) is easily extendable to such data.

In theory, even similarity between pairs of real-valued time series can be computed with
ABC. For example, with an ε such that values within |ε| are considered “equal”, ABC can
be computed with an indicator function such as:

δxi yi =
{
1 if |xi − yi | ≤ ε

0 otherwise

123

Fast network discovery on sequence data via time-aware hashing

However, unlike our mean-based proposal, this approach requires normalizing the time
series beforehand to ensure matching scales. Furthermore, our window LSH family requires
a finite vocabulary of symbols and thus does not allow “soft equality” between sequence
elements. We leave extensions of this nature for future work.

5 Scaling ABC using LSH

Beyond proposing ABC as a standalone sequence similarity measure, we apply ABC sim-
ilarity and its distance complement to LSH for the ultimate goal of fast network discovery.
In doing so, we prove that ABC distance is a metric, and use this result to design a new
locality-sensitive hashing family tailored to capturing consecutive (“time-aware”) similarity
with ABC.

5.1 Theoretical foundation: metrics

The first step in designing an LSH family is to show that the distance measure in question is a
metric, since LSH families may only be constructed for distance metrics (although note that
not every distance metric has a corresponding LSH family). Upholding the metric axioms
allows for guarantees of false positive and negative rates in hashing. A metric is defined as
follows:

Definition 5 (Metric) A metric is a distance measure that satisfies the following axioms:

1. Identity d(x, y) = 0 ⇐⇒ x = y.
2. Non-negativity d(x, y) ≥ 0.
3. Symmetry d(x, y) = d(y, x).
4. Triangle inequality d(x, y) ≤ d(x, z) + d(z, y).

Our main result is the following:

Theorem 1 (ABC distance is a metric) The ABC distance measure (Definition 3) is a metric.
It satisfies all the metric axioms, including the triangle inequality. By extension, the distance
based on ABC’s inverse similarity measure (Definition 4) is also a metric.

Proof We give a sketch of the proof that ABC distance satisfies these properties, with nec-
essary supporting proofs in the appendix.

1. Identity Following Definition 3, the ABC distance d(x, y) is 0 when p = 1 and k1 = n.
This occurs when x and y share a single run of length n, which means that x = y.
Likewise, when x = y, the number of agreeing runs p is 1 and the run length is n, so
d(x, y) = 0.

2. Non-negativity If x and y are the same, d(x, y) = 0. Otherwise, it must be that S(x, y) >

s(x, y) (see “Appendix B.1”), so d(x, y) ≥ 0.
3. Symmetry The sequence comparison order does not change the distance.
4. Triangle inequality This is the most complex and difficult-to-satisfy property. We prove

that ABC distance satisfies the triangle inequality by induction, considering different
options for agreement between sequences and showing that the triangle inequality always
holds. We refer the reader to the full proof in “Appendix B.2”.
�

123

T. Safavi et al.

Fig. 6 Window hashing with FW .
The hash signatures are the
concatenation (i.e., the AND) of
the length-2 windows starting
from the first and fourth bits of
each sequence

5.2 ABC-LSH definition

Although not all metrics have a corresponding LSH family, the ABC distance does.We begin
by defining an LSH family:

Definition 6 (Locality-sensitive family of hash functions [28]) Given some distance mea-
sure d(x, y) satisfying the metric axioms, a family of locality-sensitive hash functions
F = (h1(x), . . . , h f (x)) is said to be (d1, d2, p1, p2)-sensitive if for every function hi (x) in
F and two distances d1 < d2:

1. If d(x, y) ≤ d1, the probability that hi (x) = hi (y) is at least p1. The higher the p1, the
lower the probability of false negatives.

2. If d(x, y) ≥ d2, the probability that hi (x) = hi (y) is at most p2. The lower the p2, the
lower the probability of false positives.

The simplest LSH family uses bit sampling [19] and applies to Hamming distance, which
quantifies the number of differing components between two vectors. The bit-sampling LSH
family FH over n-dimensional binary vectors consists of all functions that randomly select
one of its n components or bits: FH = {h : {0, 1}n → {0, 1} | h(x) = xi for i ∈ [1, n]}. Under
this family, hi (x) = hi (y) if and only if xi = yi . In other words, the i-th bit of x must be the
same as the i-th bit of y. The FH family is a (d1, d2, 1− d1

n , 1− d2
n)-sensitive family. Here,

p1 describes the probability of two vectors colliding when their distance is at most d1 (i.e.,
x and y differ in at most d1 bits). Thus, p1 corresponds to the complement of the probability
of selecting one of the disagreeing bits out of the total n bits. The probability p2 is similarly
derived.

We propose a newLSH familyFW , extending our emphasis on consecutiveness to hashing.
While the established LSH family on Hamming distance samples bits, our proposed LSH
family FW consists of randomly sampled windows (subsequences), starting from the same
index, for all sequences in the dataset (Fig. 6).

Theorem 2 (Window sampling LSH family) Given a window size k, our proposed family of
hash functions FW consists of n − k + 1 hash functions:

FW = {h : {0, 1}n → {0, 1}k | h(x) = (xi , . . . , xi+k−1), i ∈ [1, n − k + 1]}
Equivalently, hi (x) = hi (y) if and only if (xi , . . . , xi+k−1) = (yi , . . . , yi+k−1). Using ABC
distance, the locality-sensitive familyFW is (d1, d2, 1−α d1

(1+α)n−1 , 1−α d2
(1+α)n−1)-sensitive.

Proof The probabilities p1 and p2 are derived by normalizing d1 and d2 and taking their
complement, the same way that p1 and p2 are derived for the Hamming distance LSH
family. In the case of ABC distance, we normalize both d1 and d2 in the range [0, 1] by
dividing by S(x, y). We then take their complement to obtain p1 = 1 − α d1

(1+α)n−1 and

p2 = 1 − α d2
(1+α)n−1 .
�

123

Fast network discovery on sequence data via time-aware hashing

5.3 Controlling false positives and negatives

Given an LSH family, it is typical to construct new “amplified” families by the AND and OR
constructions of F [28], which provide control of the false positive and negative rates in the
hashing process. Concretely:

Definition 7 (LSH AND and OR constructions) Given a locality-sensitive family of hash
functions F = (h1(x), . . . , h f (x)), the AND construction creates a new hash function g(x)
as a logical AND of r members of F. The new hash function g(x) consists of {hi }r , each i
chosen uniformly at random without replacement from [1, f]. Then g(x) = g(y) if and only
if hi (x) = hi (y) for all i ∈ [1, r]. The OR construction constitutes a logical OR of b hash
functions in F. In this case, we say that g(x) = g(y) if hi (x) = hi (y) for any i ∈ [1, b].
Below, we detail the effects of the AND and OR constructions on FW .

AND operation We have a single hash table and a hash function g(x) = {hi }r . Each hi is
chosen uniformly at random from FW (Fig. 6). We compute a hash signature for each data
point x(i) as a concatenation of the r (potentially overlapping) length-k windows starting
at index i for all hi ∈ g. The AND operation turns any locality-sensitive family of hash
functions F into a new (d1, d2, p1r , p2r)-sensitive family F’.

OR operation We have a hash function g(x) = {hi }b. Again, each hi , chosen uniformly at
random from FW , specifies a length-k window starting at index i . We create b hash tables. In
the j-th round of hashing, j ∈ [1, b], we compute hash signatures for all data points using
the j-th hash function hi ∈ g. Thus each data point is hashed b times. The OR operation
turns the same family F into a (d1, d2, 1 − (1 − p1)b, 1 − (1 − p2)b)-sensitive family.

Parameters As we show in the experiments, parameter setting is straightforward based on
the desired level of approximation or preciseness in the network discovery process. The
higher the r , the lower the probability of false positives, as more windows are sampled and
hashing becomesmore precise. Conversely, the higher the b, the lower the probability of false
negatives, as more sequences are given the opportunity to collide. In all cases—AND, OR,
both, or neither—an edge between each colliding pair (x(i), x(j)) is added to the discovered
graph G.

Regardless of parameter values, we cannot make strict runtime guarantees with ABC-
LSH, since the number of hash collisions depends on the nature of the data. However, while
in theory hashing-based network discovery is worst-case O(n2t) (i.e., every length-t time
series is exactly the same), we show in the experiments that most datasets—even those with
high average pairwise correlation—result in sub-quadratic network discovery time.

6 Putting everything together

Having introduced a new metric, ABC distance, and its corresponding LSH family ABC-
LSH, we turn back to our original goal of scalable network discovery.

ABC-LSH pipeline We review the ABC-LSH pipeline in Algorithm 1. Given N time series,
each of length n, we convert all data to binary following the representation in Sect. 4.1 (line
1 of Algorithm 1). We then apply the subsequence hashing scheme of FW (Sect. 5.2), setting
r and b (Sect. 5.3) according to the desired false positive and negative rates (line 2). Finally,
we compute all intra-bucket pairwise sequence similarities to construct a sparse weighted
network for further analysis (lines 3–9).

123

T. Safavi et al.

Algorithm 1: Network discovery with ABC-LSH
Input : A set of N time series X;

k: length of the window to sample;
r : the number of windows per sequence signature;
b: the number of hash tables to construct

Output: A weighted graph G = (V , E) where each node x(i) ∈ V is a time series and each edge
(x(i), x(j)) ∈ E has weight ABC(b(x(i)), b(x(j)))

// Step 1: preprocess time series
1 X ← Binarize(X)

// Step 2: fast sequence similarity search
2 buckets ← LSH- AND(X, k, r) ∪ LSH- OR(X, k, b)
// Step 3: build sparse weighted network

3 G ← Graph
4 for bucket ∈ buckets do
5 for (x(i),x(j)) ∈ bucket do
6 weight ← ABC(x(i), x(j))

7 G.AddEdge(x(i), x(j), weight)
8 end
9 end

10 return G

Further optimization There are several opportunities for optimization within the ABC-LSH
pipeline. For one, the hashing stage is trivially parallelizable on several levels. Each of
the b hash tables is independent and thus may be independently constructed and processed.
Furthermore, each bucket within each hash table is independent, so all bucket-level similarity
computations can occur in parallel.

Memoization, which trades computation for memory usage, may also be employed. If
there are multiple rounds of hashing, the same pair (x, y) may collide more than once.
In this case, a lookup table storing previously compared pairs can help avoid wasteful or
repetitive computation.Another lookup table can also store the results of repeated exponential
calculations (i.e., (1 + α)n for all encountered values of n).

7 Evaluation

In our evaluation, we strive to answer the following questions by applying our method to
several real and synthetic datasets of varying sizes:

1. Scalability How efficient is our hashing-based approach and how does it compare to
baselines?

2. Accuracy How do our output graphs perform in real applications, such as classification
of patient and healthy brains?

3. Robustness How do the scalability and accuracy of ABC-LSH change as parameters
vary?

We ran all experiments and evaluation, written in single-threaded Python 3, on a single
Ubuntu Linux server with 12 processors and 256 GB of RAM. For reproducibility, the code is
available at https://github.com/tsafavi/hashing-based-network-discovery. We do not employ
any extra optimizations (Sect. 6). As ourmethods achieve faster results than baselineswithout
necessitating extra optimizations, we leave implementation of these optimizations for future
work.

123

https://github.com/tsafavi/hashing-based-network-discovery

Fast network discovery on sequence data via time-aware hashing

Table 2 All datasets used in our experiments and evaluation

Dataset Description

COBRE Resting-state fMRI from 72 patients with schizophrenia
and 75 healthy controls. Each subject is associated
with 1166 time series (brain regions) measured for
around 100 timesteps

Penn Resting-state fMRI from 519 subjects. Each subject’s
brain comprises 3789 regional time series measured
for 110 timesteps

Synth-Penn 100 k time series either taken directly from a single
brain in the Penn dataset or else randomly selected,
phase-shifted versions of time series for the same brain

StarLightCurves 10 k phase-aligned time series of celestial object
brightness values over time, each series of length 1024

7.1 Data

Weused several datasets from different domains in our evaluation (Table 2), focusing on brain
networks discovered from resting-state functional magnetic resonance imaging (fMRI).

Brain data In recent years, psychiatric and imaging neuroscience have shifted away from the
study of segregated or localized brain functions toward a dynamic network perspective of
the brain, where statistical dependencies and correlations between activity in brain regions
can be modeled as a graph [15]. One well-known data collection procedure from which the
brain’s network organization may be modeled is resting-state fMRI, which tracks temporal
and spatial oscillations of activity in neuronal ensembles [35]. Key objectives of resting-state
fMRI are to elucidate the network mechanisms of mental disorders and to identify diagnostic
biomarkers—objective, quantifiable characteristics that predict the presence of a disorder—
from brain imaging scans [5]. Indeed, a fundamental hypothesis in the science of functional
connectivity is that cognitive dysfunction can be illustrated and/or explained by a disturbed
functional organization.

We used two publicly available datasets in this domain, COBRE [9] and Penn [37]. Both
datasets were subject to a standard preprocessing pipeline, including linear detrending, or
removal of low-frequency signal drift; removal of nuisance effects by regression; band-pass
filtering, or rejection of frequencies out of a certain range; and censoring or removal of
timesteps with high framewise motion.

Larger datasets To evaluate the scalability of ABC-LSH on larger datasets, we used a syn-
thetic dataset withmore time series and a real dataset with longer time series. Synth-Penn
consists of 100,000 length-100 time series that were either taken directly from a single brain
in the Penn dataset or else were randomly selected, phase-shifted versions of time series
from the same brain. The average absolute correlation in Synth-Penn is |r | = 0.22. For
the purpose of evaluating scalability as the number of time series grows, we generated graphs
out of the first 1000, 2000, 5000, 10,000 and 20,000 series before using the full dataset.

We also used the StarLightCurves dataset, one of the largest time series datasets
from the UCR Time Series archive, comprising 9236 phase-aligned time series that encode
celestial body brightness values over 1024 timesteps [11]. The average absolute pairwise
correlation in StarLightCurves is |r | = 0.577. Again, for the purpose of evaluating
scalability as the number of time series grows, we constructed graphs out of the first 1000,
2000 and 5000 time series as well as the full dataset.

123

T. Safavi et al.

Table 3 Baselines to which we compare ABC and ABC-LSH

Baseline Similarity or distance measure

Pairwise correlation r =
∑

i (xi−μx)(yi−μy)√∑
i (xi−μx)2

√∑
i (yi−μy)2

Pairwise Euclidean distance dED(x, y) =
√∑

i (xi − yi)2

Window-LSH dW (x, y) =
n∑

i=1
δx[i :i+k−1]�=y[i :i+k−1]

7.2 Task setup

Baselines In our scalability and robustness evaluations, we compared ABC-LSH to the
standard in network discovery, pairwise absolute-valued Pearson’s correlation. For our task-
based evaluation of accuracy, we compared both pairwise and hashing-based network
discovery using normalized ABC to three baselines (Table 3):

1. Pearson’s correlation The standard in neuroscience.
2. Euclidean distanceAlthough we show that Euclidean distance can fail to capture consec-

utiveness (Sect. 4), we use it as a baseline due to its simplicity, versatility, and popularity.
To convert dED(x, y) to a similarity sED(x, y) ∈ [0, 1], we compute the normalized
Euclidean distance d ′

ED(x, y) and then take sED(x, y) = e−d ′
ED(x,y) as the similarity

score following the method described by Jäkel et al. [20].
3. Window-LSH We introduce a new metric, window distance, for use with the previously

proposedwindow hashing family (Sect. 5.2). Described inmore detail below, the window
distance is somewhat more comparable to ABC, as it also emphasizes consecutiveness.

As all existing time series distance and similaritymeasures use pointwise comparisons, our
proposed third baseline uses the window hashing family FW with another consecutive-based
distancemeasure.Windowdistance, also operating on binary sequences, is a simple extension
of theHamming distance dH (x, y) = ∑n

i=1 δxi �=yi .We extend theHamming distance to count
the number of length-k windows (subsequences) at index i that do not match exactly between
two binary sequences: dW (x, y) = ∑n

i=1 δx[i :i+k−1]�=y[i :i+k−1]. The window distance can be
seen as the Hamming distance between vectors of n − k + 1 components, each component a
length-k window in the original sequence. In the case of k = 1, the window distance reduces
to the Hamming distance.

By extension of Hamming distance, it can be shown that the window distance is a metric
(“Appendix A.2”) and moreover has a window sampling LSH family (“Appendix A.4”). The
hashing algorithm forWindow-LSH is exactly the same as ABC-LSH. The only difference is
that Window-LSH uses window distance, rather than ABC distance, and thus its LSH family
properties p1 and p2 differ (“Appendix A.4”).

Parameters To avoid an arbitrary edge-weight threshold θ for networks discovered with all-
pairs correlation, we performed cross-validation following the task setup in Sect. 7.4 for
θ = 0.15i where i ∈ [1, 6]. We found that θ = 0.6 best balances classification accuracy with
the runtime of producing computationally expensive per-graph feature values (i.e., average
path length), which can be prohibitively slow to compute on very dense graphs.

We set the parameters forLSHwith the goal of avoiding false negatives.Beyond facilitating
comprehensive nearest-neighbor search and more accurate network discovery, this allowed
for a “worst-case” comparison of scalability with pairwise correlation, as avoiding false

123

Fast network discovery on sequence data via time-aware hashing

negatives requires more hashing and thus more computation. For the (real and synthetic)
brain data, in which the time series consist of around 100 steps, we set d1 = 10 and d2 =
95. To avoid false negatives, we set b = 8 (OR) and r = 1 (AND) such that we were
guaranteed with a 99.99% probability that d(x, y) ≤ 10 for any colliding pair (x, y). For the
StarLightCurves dataset with length-1024 time series, we set d1 = 64 and d2 = 960.
We chose r = 6 and b = 2 for false positive and negative rates of less than 1%. Through
cross-validation, we set k on the order of

√
n, the length of the time series: k = 10 for the

brain data and k = 64 for StarLightCurves.

7.3 Question 1: scalability

Brain data On average, ABC-LSH was 9× faster on the COBRE dataset and 6.6× faster
on the Penn dataset (Table 4). Since LSH is randomized, we averaged runtimes for LSH
over three trials. We find that though the brain data are relatively small, meaning that all-
pairs comparison is not particularly costly, graph generation with LSH was still an order of
magnitude faster. For example, generating all brain networks in the Penn data took over
36 h (on average, 5 min/graph) with pairwise correlation, whereas generating the same brain
networks with LSH took around 5.5 h (on average, 38 s/graph).

Larger datasets The scalability differences grew more pronounced as the number of time
series increased. Pairwise correlation with N = 20,000 for a single brain took over 3 h,
whereas ABC-LSH took on average 13 min (Fig. 7). Moreover, pairwise correlation with
N = 100,000 ran out of memory, whereas ABC-LSH took less than 2 h.

While ABC-LSH was faster than pairwise correlation on the StarLightCurves
dataset, it was slower overall than on the brain data. This result is not surprising, as the
number of LSH comparisons depends heavily on the nature of the data and the average
similarity of points in the dataset. The average absolute correlation between time series in
StarLightCurves is more than twice that ofSynth-Penn. As a result, more time series
hashed to the same buckets. However, ABC-LSH still outperformed pairwise correlation on
StarLightCurves at 2–4× faster (Fig. 7).

Table 4 LSH speedup on brain
data (s)

Dataset Corr. LSH LSH speedup

COBRE 3969 441 9×
Penn 131,307 19,722 6.6×

Fig. 7 Scalability of pairwise correlation versus ABC-LSH (runtime shown in log scale). As the number of
nodes increases, ABC-LSH is up to 15× faster than the baseline, pairwise correlation. “OOM” denotes that
pairwise correlation ran out of memory for N = 100,000

123

T. Safavi et al.

7.4 Question 2: accuracy

Our goal is not only to scale network discovery, but to also construct graphs that are as useful
to practitioners as the standard networks built with pairwise correlation. Here we focused
on the brain data, as the neuroscience and neuroimaging communities are rich with research
and data on functional brain networks.

Brain network structure Two network-theoretical properties often studied in functional con-
nectivity are the graph clustering coefficients and average path lengths [12], which are
hypothesized to encode physical meaning on regional brain communication.

As we previously observed a strong linear relationship between correlation scores and
ABC scores (Sect. 4.3), we hypothesized that the weighted networks discovered by correla-
tion and ABC would also have similar structures. To confirm this, we computed the global
clustering coefficient and average path length on all discovered networks in the COBRE and
Penn datasets using pairwise correlation, pairwise ABC (θ = 0.6), and ABC-LSH. Indeed,
we found that the averages for both pairwise ABC and ABC-LSH are good approximations
of pairwise correlation (Fig. 8).

Brain health classification Since we do not have ground-truth networks for our datasets, as
is often the case in network discovery tasks, we evaluate the quality and distinguishability of
the constructed brain networks through task-based evaluation. We classify the COBRE brain
networks, which have associated control/schizophrenic labels, discovered by each of our
baselines and the ABC variants. To represent the discovered networks, we used feature vec-
tors of network properties commonly computed in functional connectivity: [density, average
weighted degree, average clustering coefficient, modularity, average path length]T .

In our evaluations, we used two classifiers for thoroughness, the first an SVM with an
RBF kernel and the second a logistic regression classifier. We performed grid search over
the classifier parameters to identify the best classification settings and used tenfold cross-
validation to compute average performance metrics. We found that with both classifiers, the
best performers were pairwise correlation and the ABC variants (Table 5).

Using the SVM classifier, pairwise ABC performed the best at 68% accuracy, 6% higher
than the next-best ABC-LSH and 7% higher than pairwise correlation. With the logistic
regression classifier, pairwise correlation performed the best at 68 percent accuracy, fol-
lowed by ABC-LSH and pairwise ABC at 66 and 65% accuracy, respectively. As shown in

Fig. 8 Comparison of averaged brain network structural properties between correlation and the ABC variants
across all COBRE and Penn subjects

123

Fast network discovery on sequence data via time-aware hashing

Table 5 Best classification scores
per network discovery method
(SVM classifier/logistic
regression classifier)

Method Accuracy Precision Recall

Pairwise correlation .61/.68 .59/.66 .72/.80

Pairwise Euclidean .49/.57 .48/.57 .41/.59

Window-LSH .52/.57 .53/.55 .45/.73

Pairwise ABC .68/.65 .71/.63 .61/.76

ABC-LSH .62/.66 .66/.63 .63/.76

Top 2 scores per classifier and method in bold. The ABC variants and
pairwise correlation perform the best by far

Fig. 9 Runtime versus classification accuracy. High accuracy and low runtime (top left quadrant) is best.
In terms of accuracy, pairwise ABC and ABC-LSH perform comparably to, or better than, the established
baseline pairwise correlation. ABC-LSH is the fastest. The other baselines, Euclidean distance and Window-
LSH, perform poorly in terms of accuracy

Fig. 9, our ABC variants achieve comparable or higher accuracy than baselines. In partic-
ular, ABC-LSH performs in the same range as pairwise correlation with both classifiers, at
1% higher accuracy with the SVM and 2 percent lower accuracy with the logistic regres-
sion classifier. Furthermore, ABC-LSH is the fastest of all network discovery methods, and
is significantly faster than the baseline pairwise correlation, as discussed in more detail in
Sect. 7.3.

The other two baselines, Euclidean distance and Window-LSH, are faster than pair-
wise correlation and pairwise ABC, but lag far behind in accuracy. With the SVM, the
Euclidean distance-based networks achieved 19% lower accuracy than pairwise ABC.
With the logistic regression classifier, Euclidean distance achieved 9% lower accuracy
than ABC-LSH. These results confirm the utility of quantifying time-consecutive similar-
ity, whether through pairwise comparisons or, better yet, hashing. Even with approximate
similarity search via LSH, identifying consecutively similar fluctuations among pairs of
time series can lead to results better than baselines at a fraction of the computational
cost.

Our results also indicate that quantifying variable-length consecutiveness in similarity
scoring is much more flexible and accurate than counting the number of exactly matching
consecutive intervals of fixed length. Accordingly, pairwise ABC and ABC-LSH performed
upwards of 10% better than Window-LSH. The latter assigns low similarity scores to most
pairs of binary sequences due to the relatively low likelihood of many exactly matching
windows.

123

T. Safavi et al.

Fig. 10 ABC-LSH parameters and scalability. Varying the number of windows per signature r , number of
hash tables b, and length of the sampled window k affects the number of collisions, which in turn affects
computational runtime

7.5 Question 3: robustness

Finally, we investigate the effects of changing ABC-LSH parameters on scalability and
network structure. To study these effects, we generated a single brain network from the
COBRE dataset with a variety of LSH parameter settings, holding α = 10−4:

1. AND construction We varied the number of windows per signature r ∈ [1, 5], holding
b = 4 and k = 3.

2. OR construction We varied the number of hash tables b ∈ [1, 5], holding r = 2 and
k = 3.

3. Window lengthWe varied the sampled subsequence length k ∈ [3, 5], holding r = 2 and
b = 4.

Scalability The number of sequences compared by ABC-LSH depends on parameter choices,
which in turn affects false positive and negative rates. As expected, increasing r and/or k
correspondedwith a decrease in runtime, whereas increasing b correspondedwith an increase
in runtime (Fig. 10):

1. ANDconstructionBy increasing r , the length of each hash signature increases. The longer
each hash signature, the less likely that hash signatures will match exactly, so runtime
decreases due to fewer collisions.

2. OR construction By increasing b, the number of hash tables increases. This results in
more opportunities for collisions, so runtime increases.

3. Window lengthBy increasing k, themore unlikely that two time serieswindowswillmatch
exactly. Thus, runtime decreases due to fewer collisions, as is the case with increasing r .

Network structure As discussed previously, two properties often studied in functional net-
works are the clustering coefficient and average path length. We found relatively stable
results in computing these properties across the specified parameter ranges, indicating that
the discovered network structure is robust to ABC-LSH parameter changes (Fig. 11). With
small fluctuations, the average path lengths stayed short (< 2.5) and the average clustering
coefficients hovered around 0.4 to 0.6.

8 Discussion

In our experiments, we demonstrate that ABC-LSH is fast, accurate, and robust. Here, we
address further questions that a reader may have about ABC-LSH.
Question 1 Does ABC-LSH address time series lag?
Answer Beyond the theoretical requirements of LSH (Sect. 2.3) and motivation (Sect. 4) that
disqualify nonlinear time series alignment in our proposedmethods,many domains interested

123

Fast network discovery on sequence data via time-aware hashing

Fig. 11 ABC-LSH parameters and discovered network structure. The network properties remain relatively
robust varying r , b, and k

in network discovery actually seek to identify linearly aligned correlations or associations
between time series. For example, in neuroscience, the goal of studying brain networks
is to discover which regions of the brain “activate” at the same time. As this is our main
application-based motivation, we do not address time series lag in this work.
Question 2 What about network discovery via graphical models?
AnswerNetwork inferencemethods using graphical models usually rely on different assump-
tions and are applied in different domains or tasks. Assuming some distribution of edges in
the hidden network, these maximum likelihood-based methods aim to learn models that best
fit both the empirical observations and the distributional assumptions. As discussed in our
overview of related work in network discovery (Sect. 2.1), we choose not make such assump-
tions. Furthermore, as Brugere et al. [7] note, functional brain networks in the neuroscience
literature are “almost exclusively” direct interaction networks based on thresholded pairwise
similarity. As such, we followed the domain standard when designing our proposed methods.
Question 3 Why not use existing LSH families?
Answer To the best of our knowledge, no currently existing metric or LSH family quantifies
time ordering or consecutiveness (Sect. 4). In short, our aim with ABC and ABC-LSH is to
retain sequential information even in the hashing process, which is by nature approximate.
Furthermore, pairwise Euclidean distance-based network discovery does not empirically
perform well compared to pairwise correlation or our ABC variants (Sect. 7.4). Existing
LSH families related to Euclidean distance [28] would likely not perform better, since they
approximate the exact pairwise computations.

9 Conclusion

In thiswork,wemotivate the problemof efficient network discovery, drawing from the vibrant
research area of functional connectivity. To scale the existing quadratic-or-higher methods,
we propose time-aware hashing. ABC-LSH is a 3-step approach that approximates time
series, hashes them via window sampling, and builds a network using the results of hashing.
In doing so, we introduce a novel sequence similarity measure, ABC, and a corresponding
window sampling LSH family, ABC-LSH.

Using several datasets, we show that ABC-LSH is robust, discovers networks up to
15× faster than baselines (when the baselines do not run out of memory), and maintains

123

T. Safavi et al.

or improves accuracy in task-based evaluation. Furthermore, ABC-LSH is modular and thus
generalizable to other sequence similarity and hashing tasks. Our work opens up many pos-
sibilities for future study at the intersection of networks, hashing, and time series. This in
turn will impact a variety of domains as we continually seek new knowledge from data at an
ever-increasing scale.

Acknowledgements We thank the anonymous reviewers for their useful comments and suggestions. This
material is baseduponwork supported by theNational ScienceFoundation underGrantNo. IIS 1743088,Trove.
AI, Google, and the University of Michigan. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the views of the National
Science Foundation or other funding parties. The U.S. Government is authorized to reproduce and distribute
reprints for Government purposes notwithstanding any copyright notation here on.

Appendix A: Window distancemeasure

Given that most existing similarity measures on time series capture pointwise similarity,
we introduce a new baseline approach emphasizing consecutiveness, window distance. The
window distance is a simple extension of the Hamming distance. Hamming distance, which
has been shown to be a metric, is computed pointwise. We extend it here to work with
sequence windows, or subsequences.

Appendix A.1: Defining amapping

Given a binary sequence x ∈ {0, 1}n , we can segment x into contiguous overlapping subse-
quences of length k ∈ [1, n− k+1] and define a correspondence between x and its “window
mapping” wk(x):

Definition 8 (Window mapped series of x) Given a binarized time series x ∈ {0, 1}n and an
integer k ∈ [1, n − k + 1], x’s window mapping is

wk(x) = [wk(x1), wk(x2), . . . , wk(xn−k+1)]
= [(x1, . . . , xk), (x2, . . . , xk+1), . . . , (xn−k+1, . . . , xn)] (3)

The number of individual subsequences of x in wk(x) will be n − k + 1, and each
subsequence itself will be of length k, so the total length of wk(x) is k(n − k + 1).

Example 4 Given x = 10110101, y = 10101101, and k = 3, the respective window map-
pings are w3(x) = [101, 011, 110, 101, 010, 101] and w3(y) = [101, 010, 101, 011, 110,
101].

Appendix A.2:Window distance

Given two binary sequences x, y ∈ {0, 1}n and their corresponding windowmappingswk(x),
wk(y) ∈ {0, 1}k×(n−k+1), we can simply compute the Hamming distance between the map-
pings. In other words, we count the number of length-k windows at index i that do not match
exactly between the sequences.

Definition 9 (Window distance measure) Given two binarized time series x, y ∈ {0, 1}n and
an integer k ∈ [1, n − k + 1], the window distance between the series is the number of

123

Fast network discovery on sequence data via time-aware hashing

components between the respective window mappings wk(x) and wk(y) that do not match
exactly:

dW (x, y) =
n∑

i=1

δx[i :i+k−1]�=y[i :i+k−1] (4)

In essence, we are computing the Hamming distance between vectors with n − k + 1
components, each component a sequence encoding time-consecutive windows of length k in
the original sequences.

Example 5 Given x = 10110101, y = 10101101, and k = 3, the distance d(x, y) is 4, as
there are four windows that do not agree exactly:

w3(x) = [101, 011, 110, 101, 010, 101]
w3(y) = [101, 010, 101, 011, 110, 101]

Window similarity We can turn the window distance into a normalized similarity score
between 0 and 1, which is useful for creating weighted similarity graphs, by subtracting
the normalized observed distance between x and y from 1. The normalized distance is found
by dividing by n− k + 1. In the example above, the similarity between x and y is 1− 4

6 = 1
3 .

Definition 10 (Window similarity measure) Given two binarized time series x, y ∈ {0, 1}n
and an integer k ∈ [1, n − k + 1], the window similarity between the series is

sW (x, y) = 1 − dW (x, y)
n − k + 1

(5)

Appendix A.3: Metric criteria

The window distance satisfies the criteria for a metric in the same way that the Hamming
distance does.

1. Identity dW (x, y) = 0 ↔ x = y. If x and y are the same, all of their windows will agree.
Likewise, if all of the windows are the same, x and y will be the same.

2. Non-negativity dW (x, y) ≥ 0. The smallest number ofwindows that can disagree between
two equal-length bit sequences x and y is 0.

3. Symmetry dW (x, y) = dW (y, x). The distance does not depend on which sequence is
considered first.

4. Triangle inequality dW (x, y) ≤ dW (x, z) + dW (z, y). This measure is a version of Ham-
ming distance, which has been shown to satisfy the triangle inequality [28]. Essentially,
if a is the number of components that disagree between wk(x) and wk(z), and b is the
number of windows that disagree betweenwk(z) andwk(y), the number of windows that
disagree between wk(x) and wk(y) cannot be more than a + b.

Appendix A.4:Window-LSH

Our proposed window sampling LSH family (Sect. 5.2) using the window metric rather than
ABC distance is (d1, d2, 1 − d1

n−k+1 , 1 − d2
n−k+1)-sensitive. As was the case with Hamming

distance,we normalize the distancesd1 andd2 by dividing by themaximumdistance,n−k+1,
and then subtract from 1 to turn the distance into a probability.

123

T. Safavi et al.

Appendix B: Metric proof of ABC

Here we show that ABC distance satisfies the metric properties and is thus eligible for LSH.

Appendix B.1: Properties of agreeing runs

We first study the relationship between p, the number of agreeing runs between x and y, and
the maximum value of k1 + · · · + kp , the lengths of the p agreeing runs. The maximum sum
of all ki decreases linearly as p increases.

Lemma 1 (Maximum sum of lengths of p runs k1, . . . , kp) Given x, y ∈ {0, 1}n with p
agreeing runs, each of length ki , the maximum sum of the lengths of the p runs k1, . . . , kp
follows a linearly decreasing relationship, as

∑p
i=1 ki = n − p + 1.

Proof We show that the maximum value of
∑p

1 ki must decrease as p increases.

1. If p = 1, k1 ≤ n. In other words, if there is a single matching run between x and y, the
length of the matching run can be anywhere between 1 bit to n bits.

2. If p = 2, k1 + k2 ≤ n − 1. Proof by contradiction: assume k1 + k2 = n. Then there
is a matching run of k1 bits between x and y, and the remaining n − k1 = k2 bits of x
and y are also a matching run, which means that the two matching runs are consecutive,
making them one long run. This means p = 1, which contradicts the initial assumption
that p = 2. In other words, k1 + k2 ≤ n − 1 because there must be at least one bit
separating the run of the length k1 and the run of length k2.

3. If p = 3, k1 + k2 + k3 ≤ n − 2. This follows from the rule above, since if k1 + k2 + k3
were n − 1, one pair of runs would have to be merged, making p = 2.

4. Following the observations above,
∑p

i=1 ki ≤ n− p+1,with equality onlywhen
∑p

i=1 ki
is maximized. Thus, the maximum sum of all ki follows an inverse linear relationship
with p.

�
Lemma 2 (Relationship between p and

∑p
1 ki) Given x, y ∈ {0, 1}n with p agreeing runs,

each of length ki , as p increases,
∑p

i=1 ki ≤ n − p + 1, as the number of bits that separate
runs increases with p.

Next, we investigate the values of k1, . . . , kp themselves for the “maximum similarity”
Sp(x, y) given a value of p. First, we observe that for maximizing similarity given a p, the
values ki for the lengths of the p runs must be

k1 = · · · = kp−1 = 1

kp = n − 2p + 2
(6)

Intuitively, this observation makes sense because by making p − 1 agreeing runs as short
as possible, the length of the p-th run is maximized, adding on the common ratio (1 + α)

raised to the greatest exponent possible. Furthermore, note how for any value of p in the
above,

∑p
i=1 ki = n − p + 1 because (p − 1) + n − 2p + 2 = n − p + 1. This fits with

our previous observations: since the similarity is a summation of positive terms, we want to
maximize the number of runs and the sum of their lengths.

Lemma 3 (Maximum ABC similarity) Given x, y ∈ {0, 1}n with p agreeing runs, each
of length ki , x and y have maximum ABC similarity when they agree on (without loss of

123

Fast network discovery on sequence data via time-aware hashing

generality, the first) p − 1 runs of length k1 = · · · = kp−1 = 1 and one run of length
kp = n − 2p + 2.

Proof To confirm the intuition, we prove by induction that k1 = · · · = kp−1 = 1 and
kp = n − 2p + 2 for maximum similarity given a p and x, y ∈ {0, 1}n :
1. Base case p = 1. The similarity between x and y is maximized when x and y are exactly

equal and the length of the single run is n. Thus, kp = k1 = n = (1−1)+n−2(1)+2 =
(p − 1) + n − 2p + 2.

2. Inductive step Assume for some p, the similarity between x and y is maximized when
k1 = · · · = kp−1 = 1 and kp = n − 2p + 2. We show that this implies that for some
p+1, the similarity is maximized when k1 = · · · = kp = 1 and kp+1 = n−2(p+1)+2,
assuming the same constraint p+1 ≤ n

2 . Since by the inductive hypothesis the similarity
between the first p runs is maximized when k1 = · · · = kp−1 = 1 and kp = n− 2p+ 2,
the “best we can do” given that we have to add a new run is to take one bit out of the
long run (the run of length kp) to contribute to the (p + 1)-th run, and remove another
bit from the long run such that the (p + 1)-th run and the run of length kp are not
consecutive. Thus we have p = (p + 1) − 1 runs of length 1, and a long run of length
n−2p = n−2(p+1)+2. Thus, we have shown that the inductive hypothesis for some
p implies that the hypothesis is true for p + 1, so by induction we maximize similarity
between x and y with k1 = · · · = kp−1 = 1 and kp = n − 2p + 2.

�

Definition 11 (Maximum ABC similarity given p) Based on Theorem 3, the maximum ABC
similarity S(x, y)p between two binary time series x and y with p agreeing runs is

S(x, y)p = (p − 1) + (1 + α)n−2p+2 − 1

α
(7)

Likewise, the minimum ABC distance between two binary sequences x and y given a p is

minpd(x, y) = (1 + α)n − (1 + α)n−2p+2

α
− p + 1 (8)

Appendix B.2: Proving the triangle inequality for ABC distance

Our main result that enables scalable network discovery is that ABC distance is a metric
satisfying the triangle inequality.

Proof We begin with the base case where n = 1: x, y, and z are single bits.

1. x, y, and z are the same: d(x, y) = d(x, z) = d(z, y) = 0. 0 ≤ 0.
2. x and y are the same, z is different: d(x, y) = 0, d(x, z) = 1, and d(z, y) = 1. 0 ≤ 2.
3. x and z are the same, y is different: d(x, y) = 1, d(x, z) = 0, and d(z, y) = 1. 1 ≤ 1.
4. y and z are the same, x is different: d(x, y) = 1, d(x, z) = 1, and d(z, y) = 0. 1 ≤ 1.

Next, we move to the inductive step. Assume that d(x, y) ≤ d(x, z) + d(z, y) for some
value of n > 1. We show that this implies that the inequality holds for binarized series of
length n + 1, which are constructed by adding a single bit to the end of each of x, y, and z
to create x′, y′, and z′, respectively.

123

T. Safavi et al.

Setup We begin with preliminaries. First, we denote the distance between x and y ∈ {0, 1}n
as d(x, y):

d(x, y) = (1 + α)n − (1 + α)k1 − · · · − (1 + α)kp + p − 1

α

Next, we denote the distance between x′ and y′ ∈ {0, 1}n+1 as d ′(x′, y′):

d ′(x′, y′) = (1 + α)n+1 − (1 + α)k1 − · · · − (1 + α)
kp′ + p′ − 1

α

Here, p′ can either be p or p + 1: p′ = p in the case that the n + 1-th bit either appends
onto an existing run between x and y, or else disagrees between the two sequences, and
p′ = p + 1 in the case that the n + 1-th bit creates a new run of length 1 between x and y.

We now examine how distance between x and y changes by adding a single bit to the end
of x and y: in other words, moving from n to n + 1. We denote this change in distance �(i)

for i = 1, 2, or 3.

(1) Case 1: the n + 1-th bits of x and y agree, creating a new run of length one between the
sequences. Here p′ = p + 1, so kp′ = 1 and (1 + α)

kp′ = (1 + α).

�(1) = d ′(x′, y′) − d(x, y)

= (1 + α)n+1 − (1 + α)k1 − · · · − (1 + α)kp − (1 + α) + (p + 1) − 1

α

− (1 + α)n − (1 + α)k1 − · · · − (1 + α)kp + p − 1

α

= (1 + α)n+1 − (1 + α)n − (1 + α) − 1

α

= (1 + α − 1)(1 + α)n − α

α

= (1 + α)n − 1

Intuitively this result means that the maximum similarity S(x, y) increases by (1 + α)n ,
and from this we subtract a new agreeing run of length 1. In other words, we subtract
(1+α)0 from the newmaximum similarity since the exponent of a new run always begins
at 0. Thus, overall the distance changes by (1 + α)n − (1 + α)0 = (1 + α)n − 1.

(2) Case 2: then+1-th bits of x and y agree, addingor appendingonto an existing runof length
kp between the sequences. Here p′ = p and kp′ = kp + 1, so (1+ α)

kp′ = (1+ α)kp+1.

�(2) = d ′(x′, y′) − d(x, y)

= (1 + α)n+1 − (1 + α)k1 − · · · − (1 + α)kp+1 + p − 1

α

− (1 + α)n − (1 + α)k1 − · · · − (1 + α)kp + p − 1

α

= (1 + α)n+1 − (1 + α)n − (1 + α)kp+1 − (1 + α)kp

α

= (1 + α − 1)(1 + α)n − (1 + α − 1)(1 + α)kp

α

= (1 + α)n − (1 + α)kp

123

Fast network discovery on sequence data via time-aware hashing

Table 6 Enumeration of possible cases for the n + 1-th bit in x′, y′, and z′

Case Possible? Explanation

ddd ✘ There are only two possibilities for the n + 1-th bit, since we are working
with binarized series. Since there are three series x′, y′, and z′, by the
pigeonhole principle at least two of the series must agree in the n + 1-th
bit

daa ✘ If x′ and z′ agree in the n + 1-th bit, and z′ and y′ agree in the n + 1-th bit,
then x′ and y′ cannot disagree in the n + 1-th bit

dan ✘ Same explanation as above (case daa)

dna ✘ Same explanation as above

dnn ✘ Same explanation as above

ada ✘ If x′ and y′ agree in the n + 1-th bit, and z′ and y′ agree in the n + 1-th bit,
then x′ and z′ cannot disagree in the n + 1-th bit

adn ✘ Same explanation as above (case ada)

ndn ✘ Same explanation as above

nda ✘ Same explanation as above

and ✘ If x′ and y′ agree in the n + 1-th bit, and x′ and z′ agree in the n + 1-th bit,
then z′ and y′ cannot disagree in the n + 1-th bit

aad ✘ Same explanation as above (case and)

nad ✘ Same explanation as above

nnd ✘ Same explanation as above

aan ✘ If the n + 1-th bit of x′ and y′ appends to an existing run, and the n + 1-th
bit of x′ and z′ appends to an existing run, then there must be an existing
run between z and y, so the n + 1-th bit cannot start a new run

naa ✘ If the n + 1-th bit of x′ and z′ appends to an existing run, and the n + 1-th
bit of z′ and y′ appends to an existing run, then there must be an existing
run between x and y, so the n + 1-th bit cannot start a new run

ana ✘ If the n + 1-th bit of x′ and y′ appends to an existing run, and the n + 1-th
bit of z′ and y′ appends to an existing run, then there must be an existing
run between x and z, so the n + 1-th bit cannot start a new run

nnn ✘ If the n + 1-th bit starts a new run between all pairs, then all pairs must
disagree in the n-th bit, which is not possible by case ddd

dda ✔ The distance between x and y changes by �(3) = (1 + α)n , as does the
distance between x and z. The distance between z and y changes by
�(2) = (1 + α)n − (1 + α)kp where kp is the length of the last run

between z and y. We have (1+ α)n ≤ (1+ α)n + (1+ α)n − (1+ α)kp ,
or 0 ≤ (1 + α)n − (1 + α)kp . Since kp ≤ n, the inequality holds

dad ✔ Symmetric with above (case dda), with the �’s between (x, z) and (z, y)
flipped

ddn ✔ The distance between x and y changes by �(3) = (1 + α)n , as does the
distance between x and z. The distance between z and y changes by
�(1) = (1 + α)n − 1. We have (1 + α)n ≤ (1 + α)n + (1 + α)n − 1, or
0 ≤ (1 + α)n − 1. Since n > 0, the inequality holds

dnd ✔ Symmetric with above (case ddn)

123

T. Safavi et al.

Table 6 continued

Case Possible? Explanation

add ✔ The distance between x and y changes by �(2) = (1 + α)n − (1 + α)kp

where kp is the length of the last run between x and y. The distance
between x and z changes by �(3) = (1 + α)n , as does the distance

between z and y. We have (1+ α)n − (1+ α)kp ≤ (1+ α)n + (1+ α)n ,
or −(1 + α)kp ≤ (1 + α)n . The right-hand side must be positive, so the
inequality holds

nan ✔ The distance between x and y changes by �(1) = (1 + α)n , as does the
distance between z and y. The distance between x and z changes by
�(2) = (1 + α)n − (1 + α)kp , where kp is the

nna ✔ Symmetric with above (case nan)

ndd ✔ The distance between x and y changes by �(1) = (1 + α)n − 1. The
distance between x and z, as well as the distance between z and y,
changes by (1 + α)n . We have (1 + α)n − 1 ≤ (1 + α)n + (1 + α)n , or
0 ≤ (1 + α)n + 1, so the inequality holds

ann ✔ The distance between x and y changes by �(3) = (1 + α)n − (1 + α)kp ,
where kp is the length of the last run between x and y. The distance
between x and z changes by �(1) = (1 + α)n − 1, as does the distance
between z and y. We have
(1 + α)n − (1 + α)kp ≤ (1 + α)n − 1 + (1 + α)n − 1, or equivalently
0 ≤ (1 + α)n + (1 + α)kp − 2. (1 + α)n + (1 + α)kp ≤ 2, since each
term is at least 1, so the inequality holds

aaa ✔ Let the length of last run between x and y be denoted kp1 and the length of
the last run between x and z be noted kp2. Then the distance between x

and y increases by �(2) = (1 + α)n − (1 + α)
kp1 , and the distance

between x and z increases by �(2) = (1 + α)n − (1 + α)
kp2 . Since the

new bit has added onto an existing run between x and y of length kp1,
and an existing run between x and z of length kp2, the longest the last
run between z and y can be is min[kp1, kp2]. For example, if the run
between x and y is 3 bits and the run between x and z is 5 bits, the run
between y and z can be at most 3 bits. Therefore, the distance between z
and y changes by �(2) = (1 + α)n − (1 + α)

min[kp1,kp2]

If kp1 < kp2, the inequality becomes

(1+α)n − (1+α)
kp1 ≤ (1+α)n − (1+α)

kp2 + (1+α)n − (1+α)
kp1 ,

or equivalently 0 ≤ (1 + α)n − (1 + α)
kp2 . Since kp2 ≤ n, the

inequality holds. If kp1 > kp2, the inequality becomes

(1+α)n − (1+α)
kp1 ≤ (1+α)n − (1+α)

kp2 + (1+α)n − (1+α)
kp2 ,

or equivalently 0 ≤ (1+ α)n − (1+ α)
kp2 + [(1+ α)

kp1 − (1+ α)
kp2].

The bracketed term must be greater than 0 because kp1 > kp2. Since

(1 + α)n − (1 + α)
kp2 because kp2 ≤ n, we get a sum of two terms that

are each greater than or equal to 0, so the inequality holds

(3) Case 3: the n + 1-th bits of x and y disagree. Here p′ = p and kp′ = kp .

�(3) = d ′(x′, y′) − d(x, y)

= (1 + α)n+1 − (1 + α)k1 − · · · − (1 + α)kp + p − 1

α

− (1 + α)n − (1 + α)k1 − · · · − (1 + α)kp + p − 1

α

123

Fast network discovery on sequence data via time-aware hashing

= (1 + α)n+1 − (1 + α)n

α

= (1 + α − 1)(1 + α)n

α

= (1 + α)n

Enumeration of cases With the preliminaries established, we list all cases that can occur
when we add a single bit to x, y, and z to obtain x′, y′, and z′.

Let n stand for “new run” (case (1) above with �(1)), a stand for “append to existing run”
(case (2) with �(2)), and d stand for “disagree” (case (3) with �(3)). There are 3 × 3 × 3
length-3 permutations with repetition of n, a, and d for three series x′, y′, and z′, although
not all are possible in practice: in fact, only 10 out of the 27 cases are feasible. In Table 6 we
either explain why each case is impossible or else show that the triangle inequality holds.

We have shown by induction on n, the length of the binary subsequences compared, that
the triangle inequality holds for the ABC distance measure because the amounts by which
the distances change for any combination of new bits appended to x, y, and z satisfy the
triangle inequality. Thus the ABC distance satisfies the metric properties.
�

References

1. Akoglu L, Tong H, Koutra D (2015) Graph based anomaly detection and description: a survey. Data Min
Knowl Discov 29(3):626–688

2. Andoni A, Indyk P (2008) Near-optimal hashing algorithms for approximate nearest neighbor in high
dimensions. CACM 51(1):117–122

3. Ashkenazy Y, Ivanov PC, Havlin S, Peng C-K, Goldberger AL, Stanley HE (2001) Magnitude and sign
correlations in heartbeat fluctuations. Phys Rev Lett 86(9):1900–1903

4. Balakrishnan N, Koutras M (2002) Runs and scans with applications. Wiley, Hoboken
5. Bassett D, Bullmore E (2009) Human brain networks in health and disease. Curr Opin Neurol 22(4):340–

347
6. Bayardo RJ, Ma Y, Srikant R (2007) Scaling up all pairs similarity search. In: Proceedings of the 16th

international conference on world wide web, pp 131–140
7. Brugere I, Gallagher B, Berger-Wolf TY (2018) Network structure inference, a survey: motivations,

methods, and applications. ACM Comput Surv (CSUR) 51(2):24
8. Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and

functional systems. Nat Rev Neurosci 10(3):186–198
9. Center for Biomedical Research Excellence (2012) http://fcon_1000.projects.nitrc.org/indi/retro/

cobre.html
10. Chaudhuri S, Ganti V, Kaushik R (2006) A primitive operator for similarity joins in data cleaning. In:

Proceedings of the 22nd international conference on data engineering. ICDE ’06
11. Chen Y, Keogh E, Hu B, Begum N, Bagnall A, Mueen A, Batista G (2015) The UCR time series classi-

fication archive. www.cs.ucr.edu/~eamonn/time_series_data/. Accessed 1 Jan 2017
12. Dai Z, He Y (2014) Disrupted structural and functional brain connectomes in mild cognitive impairment

and Alzheimer’s disease. Neurosci Bull 30(2):217–232
13. Davidson I, Gilpin S, Carmichael O, Walker P (2013) Network discovery via constrained tensor analysis

of fmri data. In: KDD, pp 194–202
14. Dong W, Moses C, Li K (2011) Efficient k-nearest neighbor graph construction for generic similarity

measures. In: Proceedings of the 20th international conference on World wide web, ACM, pp 577–586
15. Friston KJ (2011) Functional and effective connectivity: a review. Brain Connect 1(1):13–36
16. Hallac D, Park Y, Boyd S, Leskovec J (2017) Network inference via the time-varying graphical lasso. In:

‘KDD’
17. Heimann M, Lee W, Pan S, Chen K, Koutra D (2018) Hashalign: Hash-based alignment of multiple

graphs. In: Advances in knowledge discovery and data mining—22nd Pacific-Asia conference, PAKDD
2018, Melbourne, VIC, Australia, June 3–6, 2018, Proceedings, Part III, pp 726–739

18. Iglesias F, Kastner W (2013) Analysis of similarity measures in times series clustering for the discovery
of building energy patterns. Energies 6(2):579–597

123

www.cs.ucr.edu/~eamonn/time_series_data/

T. Safavi et al.

19. IndykP,MotwaniR (1998)Approximate nearest neighbors: towards removing the curse of dimensionality.
In: ‘STOC’, pp 604–613

20. Jäkel F, Schlkopf B, Wichmann F (2008) Similarity, kernels, and the triangle inequality. J Math Psychol
52(5):297–303

21. Kale DC, Gong D, Che Z, Liu Y, Medioni G, Wetzel R, Ross P (2014) An examination of multivariate
time series hashing with applications to health care. In: ICDM, pp 260–269

22. Keogh E, Pazzani M (1999) An indexing scheme for fast similarity search in large time series databases.
In: SSDM, pp 56–67

23. Kim YB, Hemberg E, O’Reilly U-M (2016) Stratified locality-sensitive hashing for accelerated physio-
logical time series retrieval. In: EMBC

24. Kim YB, O’Reilly U-M (2015) Large-scale physiological waveform retrieval via locality-sensitive hash-
ing. In: EMBC, pp 5829–5833

25. Koutra D, Faloutsos C (2017) Individual and collective graph mining: principles, algorithms, and appli-
cations. In: Synthesis lectures on data mining and knowledge discovery. Morgan and Claypool Publishers

26. Koutra D, Shah N, Vogelstein JT, Gallagher B, Faloutsos C (2016) Deltacon: principled massive-graph
similarity function with attribution. TKDD 10(3):28:1–28:43

27. Kuo C-T, Wang X, Walker P, Carmichael O, Ye J, Davidson I (2015) Unified and contrasting cuts in
multiple graphs: application to medical imaging segmentation. In: KDD, pp 617–626

28. Leskovec J, Rajaraman A, Ullman JD (2014) Mining of massive datasets. Cambridge University Press,
Cambridge

29. Lin J, Keogh E, Lonardi S, Chiu B (2003) A symbolic representation of time series, with implications for
streaming algorithms. In: SIGMOD, pp 2–11

30. Liu Y, Safavi T, Dighe A, Koutra D (2018) Graph summarization methods and applications: a survey.
ACM Comput Surv 51(3):62:1–62:34

31. Luo C, Shrivastava A (2016) SSH (Sketch, Shingle, and Hash) for indexing massive-scale time series. In:
NIPS time series workshop

32. Martínez V, Berzal F, Cubero J-C (2016) A survey of link prediction in complex networks. ACMComput
Surv 49(4):69:1–69:33

33. Müller M (2007) Information retrieval for music and motion. Springer, New York
34. Onnela J-P, Kaski K, Kertsz J (2004) Clustering and information in correlation based financial networks.

Eur Phys J B 38:353–362
35. Park H-J, Friston K (2013) Structural and functional brain networks: from connections to cognition.

Science 342(6158):579–589
36. Ratanamahatana C, Keogh E, Bagnall AJ, Lonardi S (2005) A novel bit level time series representation

with implication of similarity search and clustering. In: PAKDD, pp 771–777
37. Satterthwaite T, Elliott M, Ruparel K, Loughead J, Prabhakaran K, Calkins M, Hopson R, Jackson C,

Keefe J, Riley M, Mentch F, Sleiman P, Verma R, Davatzikos C, Hakonarson H, Gur R, Gur R (2014)
Neuroimaging of the Philadelphia neurodevelopmental cohort. Neuroimage 86:544–553

38. Scharwächter E, Geier F, Faber L, Müller E (2018) Low redundancy estimation of correlation matrices
for time series using triangular bounds. In: Pacific-Asia conference on knowledge discovery and data
mining. Springer, pp 458–470

39. Shah N, Koutra D, Jin L, Zou T, Gallagher B, Faloutsos C (2017) On summarizing large-scale dynamic
graphs. IEEE Data Eng Bull 40(3):75–88

40. Shuman DI, Narang SK, Frossard P, Ortega A, Vandergheynst P (2013) The emerging field of signal
processing on graphs: extending high-dimensional data analysis to networks and other irregular domains.
IEEE Signal Process Mag 30(3):83–98

41. Tsitsulin A, Mottin D, Karras P, Bronstein AM, Müller E (2018) Netlsd: hearing the shape of a graph.
In: Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery and data
mining, KDD 2018, London, UK, August 19–23, 2018, pp 2347–2356

42. Yang S, Sun Q, Ji S, Wonka P, Davidson I, Ye J (2015) Structural graphical lasso for learning mouse brain
connectivity. In: KDD, pp 1385–1394

43. Yeh C-CM, Zhu Y, Ulanova L, Begum N, Ding Y, Dau HA, Silva DF, Mueen A, Keogh E (2016) Matrix
profile i: all pairs similarity joins for time series: a unifying view that includes motifs, discords and
shapelets. In: 2016 IEEE 16th international conference on data mining (ICDM), pp 1317–1322

44. Zhang Y-M, Huang K, Geng G, Liu C-L (2013) Fast kNN graph construction with locality sensitive
hashing. In: ECML PKDD, pp 660–674

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

Fast network discovery on sequence data via time-aware hashing

Tara Safavi is a graduate student in Computer Science and Engineering
at the University of Michigan. Her research focuses on scalable graph-
based data mining and machine learning. She is the recipient of an NSF
Graduate Research Fellowship, a Google Women Techmakers scholar-
ship, and a University of Michigan Dean’s and Named PhD fellowship.
She also has one best paper nomination and one patent pending.

Chandra Sripada is an Associate Professor with joint appointments in
Psychiatry and Philosophy at the University of Michigan. His research
examines agency, attention, and self-control from cross-disciplinary
perspectives.

Danai Koutra is an Assistant Professor in Computer Science and Engi-
neering at University of Michigan, where she leads the Graph Explo-
ration and Mining at Scale (GEMS) Lab. She researches scalable graph
mining methods for gaining insights into massive, messy, intercon-
nected data, which are prevalent in the real world. Her interests include
graph summarization, analysis of multi-source network data, similarity,
matching, and anomaly detection. Her work has been applied to social,
communication, and web networks, as well as to brain (functional) con-
nectivity graphs. She won an ARO Young Investigator award and an
Adobe Data Science Research Faculty Award in 2018, the 2016 ACM
SIGKDD Dissertation award, and an honorable mention for the SCS
Doctoral Dissertation Award (CMU). She has multiple papers in top
data mining conferences, including 5 award-winning papers, and holds
one “rate-1” patent and six (pending) patents on bipartite graph align-
ment. She is the Program Director of the SIAG on Data Mining and
Analytics and an Associate Editor of ACM TKDD.

123

	Fast network discovery on sequence data via time-aware hashing
	Abstract
	1 Introduction
	2 Related work
	2.1 Network discovery
	2.2 Nearest-neighbor search
	2.3 Locality-sensitive hashing

	3 Overview of problem and approach
	4 ABC: quantifying time-consecutive similarity
	4.1 Preprocessing: time series representation
	4.2 ABC: approximate binary correlation
	4.3 Understanding ABC similarity
	4.4 Generalizing ABC

	5 Scaling ABC using LSH
	5.1 Theoretical foundation: metrics
	5.2 ABC-LSH definition
	5.3 Controlling false positives and negatives

	6 Putting everything together
	7 Evaluation
	7.1 Data
	7.2 Task setup
	7.3 Question 1: scalability
	7.4 Question 2: accuracy
	7.5 Question 3: robustness

	8 Discussion
	9 Conclusion
	Acknowledgements
	Appendix A: Window distance measure
	Appendix A.1: Defining a mapping
	Appendix A.2: Window distance
	Appendix A.3: Metric criteria
	Appendix A.4: Window-LSH

	Appendix B: Metric proof of ABC
	Appendix B.1: Properties of agreeing runs
	Appendix B.2: Proving the triangle inequality for ABC distance

	References

