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Abstract—Discovering and analyzing networks from non-
network data is a task with applications in fields as diverse as
neuroscience, genomics, energy, economics, and more. In these
domains, networks are often constructed out of multiple time
series by computing measures of association or similarity between
pairs of series. The nodes in a discovered graph correspond to
time series, which are linked via edges weighted by the association
scores of their endpoints. After graph construction, the network
may be thresholded such that only the edges with stronger
weights remain and the desired sparsity level is achieved.

While this approach is feasible for small datasets, its quadratic
time complexity does not scale as the individual time series
length and the number of compared series increase. Thus, to
avoid the costly step of building a fully-connected graph before
sparsification, we propose a fast network discovery approach
based on probabilistic hashing of randomly selected time series
subsequences. Evaluation on real data shows that our methods
construct graphs nearly 15 times as fast as baseline methods,
while achieving both network structure and accuracy comparable
to baselines in task-based evaluation.

I. INTRODUCTION

Prevalent among data in the natural, social, and information

sciences are graphs or networks, which are abstract data struc-

tures consisting of entities (nodes) and connections among

those entities (edges). In some cases, graphs are directly

observed, as in the well-studied example of social networks,

where nodes represent users and edges represent a variety

of user interactions such as friendship, likes, or comments.

However, graphs may also be constructed from non-network

data, a task of interest in domains such as neuroscience [7][11],

finance [24], and transportation [29], where practitioners seek

to represent similarity or correlation among pairs of time

series as network interactions in order to gain network-related

insights from the resultant graphs.

Motivated by the growing need for scalable data analysis,

we address the problem of efficient network discovery on many
time series, which may be informally described as:

Problem 1 (Efficient network discovery: informal). Given
N time series X = {x(1), . . . , x(N)}, efficiently construct a
sparse similarity graph which captures the strong associations
(edges) between the time series (nodes).

Traditional network discovery [7][21] on time series suffers

from the simple but serious drawback of scalability. The

established technique for building a graph out of N time series

is to compare all pairs of series, forming a fully-connected

graph where nodes are time series and edges are weighted

Fig. 1: Network discovery: a key to efficiency is to avoid the
all-pairs similarity computations.

proportionally to the computed similarity or association of

the nodes they connect [13], with optional sparsification

afterward to keep only the stronger associations. This all-

pairs method is at least an Ω(N2) operation depending on

the complexity of the similarity measure, which makes the

process computationally inefficient and wasteful on anything

other than small datasets. For example, to generate even a

small graph of 5000 nodes, about 12.5 million comparisons

are required for a graph that may eventually lose most of its

edges via thresholding before further analysis. Moreover, each

comparison itself is at least linear in the time series length. For

example, correlation is linear, and the dynamic time warping

(DTW) distance measures are slower yet, adding an extra

runtime factor as the series length increases.

We propose to circumvent the bottleneck of the established

network discovery approach, namely the all-pairs comparison,

by introducing a new method based on locality-sensitive hash-

ing (LSH) tailored to time series. Informally, we first compute

a compact randomized signature for each time series, then hash

all series with the same signature to the same “bucket” such

that only the intra-bucket pairwise similarity scores need be

computed. Our main contributions are as follows:

• Novel distance measure. Constrained by the theoretical

requirements of LSH and motivated by the widespread

use of correlation as an association measure, we propose

a novel and intuitive time series distance metric, ABC,

that captures consecutively matching approximate trends

between time series. To the best of our knowledge, this

is the first distance metric to do so.

• Network discovery via hashing. We introduce a new fam-

ily of LSH hash functions, window sampling LSH, based

on our proposed distance metric. We show how the false

positive and negative rates of the randomized hashing
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process can be controlled in network construction.

• Evaluation on real data. We evaluate the efficiency and

accuracy of our method. To evaluate accuracy, we rely on

domain knowledge from neuroscience, an area of active

research on discovered networks. The graphs built by

our proposed method, ABC-LSH, are created up to 15×
faster than baselines, while performing just as well in

classification-based evaluation.

For reproducibility, we make the code available at

https://github.com/tsafavi/hashing-based-network-discovery.

II. RELATED WORK

Recently there has been significant interest in inferring

sparse graphical models from multivariate data using lasso

regularization (inverse covariance estimation) [15][30]. These

approaches assume that the data follow a k-variate normal

distribution N(0,Σ), where k is the number of the parameters

and Σ is the covariance of the distribution. Recent work

focuses on scaling this approach, albeit with the same mod-

eling assumptions. In our work, we tackle efficient network

discovery without distributional assumptions.

In graph signal processing, “graph signals” are described as

functions on the nodes in the graph, where high-dimensional

data represent nodes and weighted edges connect nodes ac-

cording to similarity [29]. While graph signal processing in-

volves transforming time series signals to construct a weighted

similarity graph, its focus is more on extending traditional

signal processing tools to graphs—the filtering and transform-

ing of the signals themselves—rather than the efficiency or

evaluation of network discovery.

The problem of fast k-nearest neighbor graph construction

has also been addressed. In a k-NN graph, each node is

connected to the top k most similar other nodes in the

graph. Some methods proposed to improve the quadratic

runtime of traditional k-NN graph construction include local

search algorithms and hashing [12] [31]. However, limiting

the number of neighbors per node is an unintuitive task. Our

method does not require a predetermined number of nearest

neighbors, but rather lets the hashing process determine which

pairs of nodes are connected. Relatedly, the set similarity self-

join problem [8] seeks to identify all pairs of objects above

a user-set similarity threshold. We argue that thresholding is

neither intuitive nor informative in network discovery: we seek

to analyze the resultant network’s connectivity patterns and

strengths without hard-to-define edge weight thresholds.

Locality-sensitive hashing (LSH) [3] has been successfully

employed in various settings, including efficiently finding

similar documents. Unlike general hashing, which aims to

avoid collisions between data points, LSH encourages col-

lisions between items such that, with high probability, only

colliding elements are similar. In our domain, general methods

of hashing time series have been proposed, although neither for

the purpose of graph construction nor approximation of corre-

lation between two time series [17] [20] [19]. Most recently,

random projections of sliding windows on time series have

been proposed for constructing approximate short signatures

TABLE I: Major symbols.

Symbol Definition
x a time series, or a real-valued length-n sequence

X a set of N time series {x(1), . . . , x(N)}
b(x) binary approximation of a time series x
S(x, y) maximum ABC similarity between two sequences
p number of agreeing “runs” between two sequences
ki length of the i-th agreeing “run” between two sequences
α The parameter upon which ABC operates; α controls the

emphasis on consecutiveness as a factor in similarity scoring
F LSH family of hash functions
k length of a window or subsequence of x
r number of hash functions to AND with LSH
b number of hash functions to OR with LSH

for hashing [23]. However, this approach uses dynamic time

warping (DTW) as a measure of time series distance. While

DTW has the advantage of potentially matching similarly-

shaped time series out of phase in the time axis, it is not a

metric, unlike our proposed measure, and therefore cannot be

used for theoretical guarantees of false positives and negatives

in hashing [26].
In summary, while fields tangential to our problem have

been explored, some to a greater degree than others, to the

best of our knowledge efficient network discovery on time

series with hashing has not been explored.

III. PROPOSED APPROACH

The problem we address is given as:

Problem 2 (Multiple time series to weighted graph). Given
N time series X = {x(1), . . . , x(N)}, construct a similarity
graph where each node corresponds to a time series x(i) and
each edge is weighted according to the similarity of the nodes
(x(i), x(j)) that it connects.

As previously stated, the traditional method of network

discovery on time series is quadratic in the number of time

series N , and its total complexity also depends on the chosen

similarity measure. We thus propose a 3-step method, depicted

in Figure 2, that avoids the costly all-pairs comparison step:

1) Preprocess time series. First, the input real-valued time

series are approximated as binary sequences, following a

representation that captures “trends”.

2) Hash binary sequences to buckets. Next, the binary

sequences are hashed to short, randomized signatures.

To achieve this, we define a novel distance metric that

is both theoretically eligible for LSH and qualitatively

comparable to the commonly-used correlation measure.

3) Compute intra-bucket pairwise similarity. Each pair of

time series that hash to the same signature, or bucket, are

compared such that an edge is created between them.

The output of the process is a graph in which all pairs

of time series that collide in any round of hashing are

connected by an edge weighted according to their similarity.

For reference, Table I defines the major symbols we use.

A. Time Series Representation
The first step in our pipeline converts raw, real-valued time

series to binary, easily hashable sequences. In the literature,
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Fig. 2: Our proposal, ABC-LSH. The output of step 3 is a graph where edges are weighted according to node similarity.

several binarized representations of time series have been

proposed [18] [4] [27]. The one we use has been called the

“clipped” representation of a time series [27].

Definition 1 (Binarized representation of time series).
Given a time series x ∈ R

n, the binarized representation of
the series b(x) replaces each real value xi, i ∈ [1, n], by a
single bit such that b(xi) = 1 if xi is above the series mean
μx, and 0 otherwise.

We choose this representation because it captures key

fluctuations in the time series—which we want to compare,

as correlation does—while approximating the time series in

a manner that facilitates fast similarity search. In particular,

LSH requires a method of computing hash signatures of

reduced dimensionality from input data, which is dependent

on which similarity or distance measure is chosen. In our

proposals, binarizing the time series naturally gives way to

the construction of short, representative hash signatures. As

we show in the evaluation, these benefits outweigh the “loss”

of information from converting to binary: we are able to

approximate correlation well with just 1s and 0s.

B. ABC: Approximate Binary Correlation

Given binary sequences that approximate real-valued time

series, we propose an intuitive and simple measure of sim-

ilarity, and a complementary distance metric, that mirrors

traditional correlation by observing matching consecutive fluc-

tuations between pairs of series. The intuition is that captur-

ing similarity via pointwise agreement—e.g., via Euclidean

distance (ED) or other commonly used measures—can be

misleading or ineffective. Agreement between two series in

t randomly scattered timesteps may not capture overall simi-

larity in trends, whereas two series following the exact same

pattern of fluctuations in t consecutive timesteps are arguably

more “associated”. Figure 3 illustrates this with ED and shows

the effectiveness of our proposed measure.

The intuition behind our proposed metric, ABC or Approx-

imate Binary Correlation, is to count similar bits between two

binarized time series x and y, while slightly exponentially

weighting consecutively similar bits in x and y such that

the longer the consecutive matching subsequences, which we

call runs [5], the more similar x and y will be deemed.

More formally, we define the similarity score as a summation

of multiple geometric series, which elegantly captures this

intuition. For some 0 < α� 1, ABC adds (1+α)i to the total

“similarity score” for every i-th consecutive bit of agreement

between the two series, starting with i = 0 every time a new

run begins. Thus, the similarity of two binarized series is a

Fig. 3: Although time series x and y are more visually similar
in (a) than the other pairs, Euclidean distance (ED) and other
pointwise methods fail to reflect that, as x and z are assigned the
lowest Euclidean distance (i.e., are the most similar with ED). By
contrast, our ABC distance metric assigns the lowest distance to
x and y. Moreover, it approximates correlation and admits LSH.

sum of 1 ≤ p ≤ n
2 geometric series, each with a common ratio

r = (1+α) and a length ki where k1+ . . .+ki+ . . .+kp ≤ n.

A visual depiction of computing similarity is given in Figure 4.

The parameter α controls the emphasis on consecutiveness

in similarity scoring. For example, choosing α = 0 reduces the

similarity score to the complement of Hamming distance, and

increasing α both increases the maximum similarity score, as

explained in the next paragraph, and the “gap” between pairs

of series that match in long consecutive runs versus shorter

runs (for example, agreement in every other timestep).

Definition 2 (ABC: Approximate Binary Correlation).
Given two binarized time series x, y ∈ {0, 1}n, which have
p matching consecutive subsequences i of length ki, the ABC
similarity is defined as

s(x, y) =
p∑

i=1

ki∑

b=0

(1 + a)b =

∑p
i=1 (1 + α)ki − p

α
(III.1)

Fig. 4: The ABC similarity between x and y is the sum of the
two geometric series that encode the length-2 and 3 runs.
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where α ∈ (0, 1] controls the emphasis on consecutiveness:
higher α, higher emphasis. Above we use that the sum of a
geometric progression is

∑n−1
b=0 rb = 1−rn

1−r for r �= 1.

The maximum possible ABC similarity for two identical

series, which we denote S(x, y), is the sum of a geometric

progression from 0 to n − 1 with common ratio (1 + α):

S(x, y) =
∑n−1

i=0 (1 + α)i = (1+α)n−1
α .

We derive the complementary distance score by simply

subtracting from the maximum similarity. Thus, identical

sequences will have a distance of 0, and sequences with no

agreeing bits will have a distance of S(x, y):

d(x, y) = S(x, y)− s(x, y) =
∑p

i=1 (1 + α)ki + p− 1

α
(III.2)

To the best of our knowledge, the ABC distance is the first

metric that goes beyond pointwise comparisons and approxi-

mates the widely-used correlation well. As we explain in the

following sections, the metric property is key for speeding up

the network discovery problem.

C. Comparison to Correlation

One of our objectives in designing ABC is to assign sim-

ilarity scores comparable to Pearson’s correlation coefficient,

since the latter is the most common association measure in

network discovery on time series [7][21]. Intuitively, ABC is

like correlation in that it assigns higher similarity to pairs of

series following similar trends, which occurs when the series

follow the same pattern over longer consecutive intervals.

To confirm the intuition, we plotted Pearson’s correlation

coefficient r against ABC similarity s with α = .0001 on

all pairs of time series in 10 real brain time series datasets,

each taken from the COBRE dataset described in Section IV.

Two of these plots, shown as heatmaps, are given in Figure 5.

We also performed linear regression on all (r, s) pairs, finding

a strong correlation—on average, r = .84 with a p-value of

0—between the sets of similarity score pairs in all datasets.

However, one caveat is that ABC similarity as it is intro-

duced here does not take into account inversely correlated

relationships as Pearson’s correlation coefficient does, so we

consider Pearson’s correlation coefficient on a scale of [-1, 1]

and ABC similarity (normalized by dividing by S(x, y)) on

Fig. 5: Pearson’s correlation coefficient (x-axis) versus ABC
similarity (y-axis) scores for all pairs of time series in two unique
time series matrices from the COBRE dataset. There is an evident
and strong correlation between the scores, confirming that ABC
is a good approximator of correlation.

a scale of [0, 1]. In other words, many of the pairs with the

lowest ABC score have a strong inverse correlation. We note

that although we do not do so here, we could easily consider

inverse correlations using ABC by computing similarity scores

on both agreeing and disagreeing runs, or runs where the

corresponding values between the series are opposite.

D. Defining ABC’s LSH Family

The final step in our network discovery process is to apply

ABC similarity and its distance complement to LSH such that

we can quickly identify and connect similar time series. In this

section, we show that ABC can be applied to LSH. Satisfying

the metric properties is an important first step for defining a

distance measure’s corresponding LSH family, as upholding

these properties allows for guarantees of false positive and

negative rates in hashing.

Definition 3 (Distance metric). A distance metric is a
distance measure that satisfies the following axioms [26]:
(1) Identity: d(x, y) = 0 ⇐⇒ x = y. (2) Non-negativity:
d(x, y) ≥ 0. (3) Symmetry: d(x, y) = d(y, x). (4) Triangle
inequality: d(x, y) ≤ d(x, z) + d(z, y).

Our main result is the following:

Theorem 1 (ABC is a metric). The ABC distance in
Eq. (III.2) is a metric. It satisfies all the axioms of a metric,
including the triangle inequality.

Proof. We give a sketch of the proof that ABC satisfies these

properties, with necessary supporting proofs in the appendix.

(1) Identity: the distance d(x, y) is 0 when p = 1 and k1 = n
(Eq. (III.2)): x and y have a single consecutive agreeing

run of length n, which means that x = y. Likewise, when

x = y, the number of agreeing runs p will be 1 and the

length of the run will be n, so d(x, y) = 0.

(2) Non-negativity: if x and y are the same, d(x, y) = 0.

Otherwise, the maximum similarity S(x, y) is greater than

the maximum possible similarity between x and y, as

shown in the Appendix B1, so d ≥ 0.

(3) Symmetry: the order in which we compare sequences

does not change the distance.

(4) Triangle inequality: this is the most complex and

difficult-to-satisfy property. For ABC, we prove it by

induction and by considering different options for agree-

ment between sequences. The details of our proof are

given in Appendix B2.

Proposed LSH Family FW. Although not all distance metrics

have a corresponding LSH family, our ABC distance metric

does. Formally an LSH family is defined as:

Definition 4 (Locality-sensitive family of hash functions).
Given some distance measure d(x, y) satisfying the distance
metric axioms, a family of locality-sensitive hash functions
F = (h1(x), . . . , hf (x)) is said to be (d1, d2, p1, p2)-sensitive
if for every function hi(x) in F and two distances d1 < d2:
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(1) If d(x, y) ≤ d1, then the probability that hi(x) = hi(y) is
at least p1. The higher the p1, the lower the probability
of false negatives.

(2) If d(x, y) ≥ d2, then the probability that hi(x) = hi(y) is
at most p2. The lower the p2, the lower the probability
of false positives.

The simplest LSH family uses bit sampling [16] and ap-

plies to Hamming distance, which quantifies the number of

differing components between two vectors. The bit-sampling

LSH family FH over n-dimensional binary vectors consists of

all functions that randomly select one of its n components or

bits: FH = {h : {0, 1}n → {0, 1}|h(x) = xi for i ∈ [1, n]}.
Under this family, hi(x) = hi(y) if and only if xi = yi,
or in other words the bit at the i-th index of x is the

same as the bit at the i-th index of y. The FH family is

a (d1, d2, 1 − d1

n , 1 − d2

n )-sensitive family, based on Def. 4.

In this definition, p1 describes the probability of two vectors

colliding when their distance is at most d1 (i.e., x and y differ

in at most d1 bits). Thus, p1 corresponds to the complement
of the probability of the vectors not colliding or, equivalently,

the probability of selecting one of the disagreeing bits out of

the n total bits, d1

n . p1 = 1− d1

n ; p2 is derived similarly.

We propose a new LSH family, FW, which carries the con-

secutiveness intuition behind ABC. While the established LSH

family on Hamming distance samples bits, our proposed LSH

family FW extends this by consisting of randomly sampled

consecutive subsequences, starting from the same index, for

all binary sequences in the dataset. An example of how it

works in practice is given in Figure 6.

Theorem 2 (Window sampling LSH family). Given a
window size k, our proposed family of hash functions FW
consists of n− k + 1 hash functions:

FW = {h : {0, 1}n → {0, 1}k|h(x) = (xi, . . . , xi+k−1), i ∈ [1, n−k+1]}

Equivalently, hi(x) = hi(y) if and only if (xi, . . . , xi+k−1) =
(yi, . . . , yi+k−1). The family FW is (d1, d2, 1−α d1

(1+α)n−1 , 1−
α d2

(1+α)n−1 )-sensitive.

Proof. Let s1 = S(x, y)−d1 be the complementary similarity

score for d1 and s2 be the complementary similarity score for

d2. The probabilities p1 and p2 are derived by scaling d1 and

d2 and taking their complement; in other words, they are found

in the same way that Hamming distance is converted into a

normalized similarity score for its corresponding LSH family.

In our case, if we normalize both d1 and d2 by dividing by the

maximum distance S(x, y) we get
S(x,y)−s1
S(x,y) and

S(x,y)−s2
S(x,y) , or

equivalently p1 = s1
S(x,y) = α s1

(1+α)n−1 and p2 = α s2
(1+α)n−1 .

E. ABC-LSH: Hashing Process for ABC

Given an LSH family, it is typical to construct new “ampli-

fied” families F' by the AND and OR constructions of F [26],

which provide control of the false positive and negative rates

in the hashing process. Concretely:

Definition 5 (AND and OR Construction). Given a
(d1, d2, p1, p2)-sensitive family of LSH functions F =

Fig. 6: The hash function g ANDs the second and fourth hash
functions (h2 and h4) in the LSH family FW with k = 2, so the
hash signatures are the concatenation (i.e. the AND) of the length-
2 windows starting from bits two and four of each sequence.

(h1(x), . . . , hf (x)), the AND construction creates a new hash
function g(x) as a logical AND of r members of F such that
g(x) = {hi}r for each i chosen uniformly at random without
replacement from [1, f ]. Then we say g(x) = g(y) if and only
if hi(x) = hi(y) for all i ∈ [1, r]. The OR construction does
essentially the same as the AND operation, except we say that
g(x) = g(y) if hi(x) = hi(y) for any i ∈ [1, b].

The AND operation turns any locality-sensitive family F
into a new (d1, d2, p1

r, p2
r)-sensitive family F', whereas the

OR operation turns the same family F into a (d1, d2, 1− (1−
p1)

b, 1−(1−p2)
b)-sensitive family. To leverage the benefits of

these constructions, we incorporate both of them in the hashing

process of our proposed network discovery approach. Let k be

the length of the sampled window, and r, b the number of hash

functions used in the AND and OR operations, respectively.

AND operation. For the AND operation, we have a single

hash table and a hash function g(x) = {hi}r, where each hi

is chosen uniformly at random from FW. We compute a hash

signature for each data point x(i) as a concatenation of the r
length-k potentially overlapping windows starting at index i
for all hi ∈ g. The algorithm returns all of the buckets of the

single hash table created so that all pairs within each bucket

can be compared. An example round of hashing with the AND

construction is depicted in Figure 6.

OR operation. For the OR operation, we create b hash tables.

In b rounds, we compute a hash signature for each data point,

where the signature is a length-k window starting at index i for

some hi ∈ FW chosen independently and randomly at uniform.

Thus each data point is hashed b times, and the algorithm

returns the union of all buckets for the b hash tables such that

all pairs within all buckets can be compared.

Parameter Setting. As we show in the experiments, parameter

setting is quite intuitive based on the desired properties of

the constructed graph. Adjusting the parameters controls false

positive and negative rates. The higher the r, the lower the

probability of false positives; the higher the b, the lower

the probability of false negatives. The union of AND/OR

constructions form an S-curve, which is explained in more

detail in [26]. In all cases—AND, OR, both, or neither—all

pairs (x(i), x(j)) that hash to the same bucket in any of the

constructed tables are compared pairwise, and an edge between

(x(i), x(j)) with the computed similarity between the two se-

quences is added to the graph G. Notably, the independence of

both the intra-bucket comparison step and the OR construction
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make our algorithm easily and embarrassingly parallelizable,

although we do not explore parallelization here.

There are no strict runtime guarantees we can make with

LSH, since every series could hash to a unique bucket or the

same bucket depending on the nature of the data. However,

while in theory graph construction could be quadratic if all

time series are nearly identical, in practice most datasets—

even those with series that are on average correlated—will

result in sub-quadratic graph construction time, as we show in

the experiments.

F. Network Discovery: Putting Everything Together

Having introduced a new distance metric and its correspond-

ing LSH family with the necessary theoretical background, we

turn back to our original goal: scalable network discovery, as

depicted at a high level in Figure 2. Given N time series,

each of length n, we convert all data to binary following

the representation in Section III-A, then follow the steps in

Algorithm 1, using LSH as described in Section III-E.

Algorithm 1: Window LSH to graph

Input : A set of N binarized time series X;
k: length of the window to sample;
r: # of windows per time series signature;
b: # of hash tables to construct

Output: A weighted graph G = (V,E) where each node
x(i) ∈ V is a time series and each edge
(x(i), x(j)) ∈ E has weight s(x(i), x(j))

1 G← GRAPH

2 buckets← LSH-AND(X, k, r) ∪ LSH-OR(X, k, b)
3 for bucket ∈ buckets do
4 for (x(i),x(j)) ∈ bucket do
5 weight← S(x(i), x(j))

6 G.ADDEDGE(x(i), x(j), weight)
7 end
8 end
9 return G

IV. EVALUATION

In our evaluation, we strive to answer the following ques-

tions by applying our method to several real and synthetic

datasets: (1) How efficient is our approach and how does it

compare to baseline approaches? (2) How do our output graphs

perform in real applications, such as classification of patient

and healthy brains? (3) How do the network discovery runtime

and network properties change for varying parameters of ABC-

LSH? We answer the first two questions in the following

subsections and the last in Appendix A.

A. Data

We used several datasets from different domains, since

network discovery is relevant in a variety of settings.

Brain data. In recent years, psychiatric and imaging neuro-

science have shifted away from the study of segregated or lo-

calized brain functions toward a dynamic network perspective

of the brain, where statistical dependencies and correlations

between activity in brain regions can be modeled as a graph

[14]. One well-known data collection procedure from which

the brain’s network organization may be modeled is resting-

state fMRI, which tracks temporal and spatial oscillations of

activity in neuronal ensembles [25]. Key objectives of resting-

state fMRI are to elucidate the network mechanisms of mental

disorders and to identify diagnostic biomarkers—objective,

quantifiable characteristics that predict the presence of a

disorder—from brain imaging scans [6]. Indeed, a fundamental

hypothesis in the science of functional connectivity is that

cognitive dysfunction can be illustrated and/or explained by

a disturbed functional organization.
For our evaluation of brain graphs, we used two publicly

available datasets, given in Table II.

TABLE II: Brain data.

Dataset Description Labeled?
COBRE [2] Resting-state fMRI from 147 subjects: 72

patients with schizophrenia and 75 healthy
controls. Each subject is associated with
1166 time series (brain regions) measured for
around 100 timesteps, with some variation.
For those pairs of time series with unequal
lengths, we take the minimum of the lengths.

�
Control
vs.
Patient

Penn
[1][28]

Resting-state fMRI from 519 subjects. Each
subject’s is associated with 3789 time series
measured across 110 timesteps.

�

Both datasets were subject to a standard preprocessing

pipeline, including 1) linear detrending, or removal of low-fre-

quency signal drift; 2) removal of nuisance effects by regres-

sion; 3) band-pass filtering, or rejection of frequencies out of

a certain range; and 4) censoring or removal of timesteps with

high framewise motion.
For all graphs constructed with pairwise comparison, we

held θ = 0.6. For those graphs constructed with ABC, we

held α = .0001. We constructed graphs with the all-pairs

method for COBRE and Penn using the absolute value of

Pearson’s correlation coefficient as our baseline, as is typical

in functional connectivity studies [14]. We also constructed

graphs on the same datasets using ABC for both the all-pairs

and LSH construction methods. For LSH, we set the window

size k = 10, following a rule of thumb of keeping the window

size roughly
√
n. We set d1 = 10 and d2 = 95, the number of

OR constructions b = 8, and did not use the AND construction

(i.e., r = 1) such that we achieved p1 = .9999 and p2 = .36 so

as to avoid false negatives for the purpose of comprehensive

nearest-neighbors search: we were guaranteed with a 99.99%
probability that the ABC distance between any colliding series

x and y was less than or equal to 10 (out of on average length-

100 series).
We acknowledge that our brain datasets are relatively small,

as most studies in functional connectivity have used small

datasets. Therefore, to compare scalability on larger datasets—

both in terms of more time series and longer time series—we

studied graph construction on a generated synthetic dataset as

well as a real dataset taken from the UCR Time Series archive.
Synthetic data. Synth-Penn consists of 20,000 length-

100 time series that were either taken directly from a single

brain in the Penn dataset or else were randomly selected
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phase-shifted versions of time series for the same brain

in the Penn dataset. The average absolute correlation in

Synth-Penn was |r| = .22. We used the same LSH

parameters as with the real brain graphs. For the purpose of

evaluating scalability as the number of time series grows, we

generated graphs out of the first 1000, 2000, 5000, and 10,000

series before using the full dataset.

Star Light Data. We also used the StarLightCurves
dataset, which is the largest time series dataset from the UCR

Time Series archive. It comprises 9236 time series each of

length 1024 [9], with an average absolute correlation of |r| =
.577. Again, for the purpose of evaluating scalability as the

number of time series grows, we constructed graphs out of

the first 1000, 2000, and 5000 time series as well as the full

dataset. For LSH, we set k = 64, d1 = 64, and d2 = 960.

Then, to avoid both false positives and false negatives with a

high probability—and to construct sparser graphs, since our

parameter setting for the brain graphs admitted false positives

at a higher rate—we chose r = 6, and b = 2 for false positive

and negative rates of less than .01. For detailed discussion on

parameter tuning of ABC-LSH (r, b, k), we refer the reader

to Appendix A.

B. Scalability Analysis

We ran all experiments and evaluation on a single Ubuntu

Linux server with 12 processors and 256 GB of RAM, written

in single-threaded Python 3.

Brain data. An overview of the overall graph construction

runtime for all subjects in the COBRE and Penn datasets is

given in Table III. Since LSH is randomized, we averaged

runtimes for LSH-generated graphs over three trials. We find

that though these data are relatively small, meaning that all-

pairs comparison is not particularly costly, graph generation

with LSH was still an order of magnitude faster. For example,

generating all Penn graphs took over 36 hours (on average, 5

minutes/graph) with the pairwise technique, whereas generat-

ing the same subject brains with LSH took around 5.5 hours

(on average, 38 seconds/graph).

TABLE III: Runtime comparison between pairwise correlation
and ABC-LSH for the two brain datasets.

Dataset Pairwise (sec) LSH (sec)
COBRE 3,969 441
Penn 131,307 19,722

Synthetic data. The differences in graph construction run-

time grew more pronounced as the size of the data increased.

For example, with N = 20, 000, pairwise construction for a

single graph took over 3 hours, whereas LSH construction took

on average 13 minutes, as shown in Figure 7a.

Star Light Data. While LSH is still faster than pairwise

comparison on the StarLightCurves dataset, we find that

it is in general slower than with the brain data. This result is

not surprising: the number of comparisons performed by LSH

depends heavily on the nature of the data and the average

similarity of points in the dataset. The average correlation

between time series in StarLightCurves is much higher

(a) Synth-Penn data

(b) StarLightCurves data
Fig. 7: ABC-LSH vs. pairwise correlation: average runtime w.r.t.
the number of nodes. ABC-LSH is up to 14.5× faster. Runtime,
plotted on the y-axes, is in log scale.

than that of Synth-Penn, and as such more time series hash

to the same bucket. Overall, though, it still outperforms all-

pairs comparison at 2− 4× faster, as shown in Figure 7b.

C. Evaluation of Output Graphs

Our goal is not only to scale the process of network discov-

ery but to construct graphs that are as useful to practitioners

as the traditional pairwise-built graphs. For evaluation, we fo-

cused on the brain data, as the neuroscience and neuroimaging

communities are rich with functional connectivity studies on

brain graphs discovered from resting-state fMRI.

Qualitative analysis. Two properties that are often studied

in constructed functional networks are the graph clustering

coefficients and average path lengths [10], which are hypothe-

sized to encode physical meaning on communication between

brain regions. We computed these statistics on all output brain

graphs for the COBRE and Penn datasets generated by the

pairwise correlation, pairwise ABC, and ABC-LSH methods,

and plotted the averages and standard deviations per dataset

and method in Figure 8. We find that the averages for both

ABC pairwise and ABC-LSH are good approximations of the

pairwise correlation baseline.

Task-based evaluation. Since we do not have ground-

truth networks for our datasets, we evaluated the quality

and distinguishability of the constructed brain networks by

performing classification on the output COBRE brain graphs,

for which we have healthy/schizophrenic labels. We use graph

properties commonly computed on functional networks as

features [7]: each output graph is represented by a feature

vector of [density, average weighted degree, average clustering

coefficient, modularity, average path length]T .
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(a) COBRE (b) Penn

Fig. 8: Average clustering coefficient and path length for the
generated brain graphs. The averaged properties of the graphs
generated by the ABC pairwise and ABC-LSH methods are very
close to those of the baseline method, pairwise correlation.

Fig. 9: (Top left is best.) Average classification accuracy versus
runtime for pairwise correlation, pairwise ABC, and ABC-LSH.

We followed the generated graph classification setup in

[22], training a logistic regression classifier on the graph

feature vectors. Per method, we performed a grid search over

{.01, .1, 1, 10, 100, 1000, 10000} for the regularization param-

eter C to identify the best setting. We performed classification

with stratified 10-fold cross-validation on each method and

report the average scores for accuracy, precision, and recall

in Table IV, with accuracy versus graph construction runtime

is plotted in Figure 9. Unlike the pronounced differences we

observe in runtime, classification scores per metric are in the

same range for all three methods, with a mere .02 average

difference between pairwise correlation and ABC-LSH.

TABLE IV: Classification scores on the output COBRE brain
graphs using pairwise correlation, pairwise ABC, and ABC-LSH.

Method C
Metric Score

Accuracy Precision Recall
Pairwise corr. 1 .68 .66 .80
Pairwise ABC 10 .65 .63 .76
ABC-LSH 10000 .66 .63 .76

V. CONCLUSION

In this work we motivate the problem of efficient network

discovery on time series, drawing in particular from the

vibrant research area of functional connectivity. To scale the

existing quadratic-time methods, we propose ABC-LSH, a 3-

step approach that approximates time series, hashes them via

window sampling, and builds a graph based on the results

of hashing. This method is based on our novel and intuitive

distance measure, ABC, which approximates correlation by

emphasizing consecutiveness in trends, as well as on a new

window-sampling LSH family. We apply our work to several

datasets and show that, with the right choice of parameters on

our real and synthetic datasets, ABC-LSH graph construction

is up to 15× faster than all-pairs graph construction, while

maintaining accuracy in terms of output graph properties and

classification power. We believe our work opens up many

possibilities for future study at the intersection of network

discovery, hashing, and time series, which will impact a

variety of domains as data are continuously generated at ever-

increasing scale.
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APPENDIX

A. Appendix 1: Sensitivity Analysis of ABC-LSH

Runtime. Since the number of time series compared in ABC-

LSH depends on the length of hash signatures r, the number

of hash tables constructed b, and the window length k, we

generated a single brain graph from a COBRE subject with a

variety of LSH settings using ABC-LSH and α = .0001:

1) r ∈ [1, 5], holding b = 4 and k = 3;

2) b ∈ [1, 5], holding r = 2 and k = 3;

3) k ∈ [3, 5], holding r = 2 and b = 4;

The runtime trends are plotted in Figure 10. As expected,

increasing r and/or k reduced graph construction runtime,

(a) Increasing r. (b) Increasing b. (c) Increasing k.

Fig. 10: ABC-LSH graph construction time vs. parameters.

(a) Varying r. (b) Varying b. (c) Varying k.

Fig. 11: Clustering coeff. and avg. path length for varying the
ABC-LSH parameters r, b, and k on a single COBRE subject.

whereas increasing b increased graph construction runtime. For

r: the longer the length of the hash signature, the more unlikely

that two time series x and y will have the same signature, so

runtime decreases as r increases. For b: the more hash tables

created, the more “chances” two time series x(i) and x(j) get to

collide, so runtime increases as b increases. For k: the longer

the window length, the more unlikely that two time series

windows (xi, . . . , xi+k−1) and (yi, . . . , yi+k−1) will match

exactly, so runtime decreases as k increases.

Network Properties. As we mentioned earlier, two properties

that are often studied in functional networks are the clustering

coefficient and average path length [10]. We computed the

differences in these properties among the generated graphs by

varying the parameters of ABC-LSH as before. The changes

in properties as the parameters vary are plotted in Figure 11.

The trends for average clustering coefficient and average path

length are quite stable: barring small fluctuations, the average

path lengths stay short (< 2.5) and the average clustering

coefficients hover around .4 - .6. These network properties

of the ABC-LSH networks are robust to parameter changes.

B. Appendix 2: Metric Proof of ABC

Here we give the theoretical foundation that underlies our

time series distance proposal, ABC. We show that it satisfies

the metric properties and is thus eligible for LSH.

1) Properties of Agreeing Runs: We first study the relation-

ship between p, the number of agreeing runs between x and

y, and the maximum value of k1+ . . .+kp, the lengths of the

p agreeing runs.

Lemma 1 (Maximum sum of lengths of p runs k1, . . . , kp).
Given x, y ∈ {0, 1}n with p agreeing runs, each of length ki,
the maximum sum of their lengths follows a linearly decreasing
relationship, as

∑p
i=1 ki = n− p+ 1.

This follows because the greater the number of runs, the

more bits that must “disagree” in order to separate those runs.

Lemma 2 (Maximum ABC similarity). Given x, y ∈ {0, 1}n
with p agreeing runs, each of length ki, x and y have maximum
ABC similarity when they agree on (without loss of generality,
the first) p − 1 runs of length k1 = . . . = kp−1 = 1 and one
run of length kp = n− 2p+ 2.

Proof. By induction on p. We omit the proof for brevity.
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Definition 6 (Maximum ABC similarity given p). Based
on Theorem 2, the max ABC similarity S(x, y)p between two
binary time series x and y with p agreeing runs, is

S(x, y)p = (p− 1) +
(1 + α)n−2p+2 − 1

α
(A.1)

Likewise, the minimum ABC distance between two binary
sequences x and y given a p is

minp[d(x, y)] =
(1 + α)n − (1 + α)n−2p+2

α
− p+ 1 (A.2)

2) Proving the Triangle Inequality: As stated in Section III,

our main result that enables scalable network discovery is that

ABC is a metric satisfying the triangle inequality.

Proof. We prove by induction on n, the length of the binary

sequences compared.

• Base case: n = 1. x, y, and z are the same: d(x, y) = d(x, z) =
d(z, y) = 0; x and y are the same, z is different: d(x, y) = 0,

d(x, z) = 1, and d(z, y) = 1; x and z are the same, y is different:

d(x, y) = 1, d(x, z) = 0, and d(z, y) = 1; y and z are the same, x is

different: d(x, y) = 1, d(x, z) = 1, and d(z, y) = 0.
• Inductive step: Assume that d(x, y) ≤ d(x, z)+d(z, y) for some
value of n > 1. We show that this implies that the inequality holds
for binarized series of length n+1, which are constructed by adding
a single bit to the end of each of x, y, and z to create x′, y′, and
z′, respectively. We begin with basics and setup. First, we denote the
distance between x and y ∈ {0, 1}n as d(x, y):

d(x, y) =
(1 + α)n − (1 + α)k1 − . . .− (1 + α)kp + p− 1

α

and the distance between x′ and y′ ∈ {0, 1}n+1 as d′(x′, y′):

d′(x′, y′) =
(1 + α)n+1 − (1 + α)k1 − . . .− (1 + α)

kp′ + p′ − 1

α

Here, p′ can either be p or p + 1: p′ = p in the case that the
n+1-th bit either appends onto an existing run between x and y, or
else disagrees between the two sequences, and p′ = p+1 in the case
that the n+ 1-th bit creates a new run of length 1 between x and y.
We now examine how distance between x and y changes by adding
a single bit to the end of x and y: in other words, moving from n
to n+ 1. We denote this change in distance Δ(i) for i = 1, 2, or 3.
Case 1: The n+ 1-th bits of x and y agree, creating a new run of
length one between the sequences. Here p′ = p+ 1, so kp′ = 1 and

(1 + α)kp′ = (1 + α). In this case, Δ(1) = d′(x′, y′) − d(x, y) =
(1 + α)n − 1.

Intuitively this result means that the maximum similarity SG(x, y)
increases by (1+α)n, and from this we subtract a new agreeing run of
length 1. In other words, we subtract (1+α)0 from the new maximum
similarity since the exponent of a new run always begins at 0. Thus,
overall the distance changes by (1+α)n− (1+α)0 = (1+α)n−1.

Case 2: The n+ 1-th bits of x and y agree, adding or appending
onto an existing run of length kp between the sequences. Here p′ = p
and kp′ = kp + 1, so (1 + α)kp′ = (1 + α)kp+1. Then Δ(2) =
d′(x′, y′)− d(x, y) = (1 + α)n − (1 + α)kp .

Case 3: The n + 1-th bits of x and y disagree. Here p′ = p and
kp′ = kp. Then, Δ(3) = d′(x′, y′)− d(x, y) = (1 + α)n.

With this setup, we enumerate several of the possible cases that
can occur when we add a single bit to x, y, and z to obtain x′, y′,
and z′, omitting repetitive cases for brevity. Let n stand for “new
run” (case (1) above with Δ(1)), a stand for “append to existing run”
(case (2) with Δ(2)), and d stand for “disagree” (case (3) with Δ(3)).
There are 3 × 3 × 3 length-3 permutations with repetition of n, a,

and d for three series x′, y′, and z′, although not all are possible
in practice: in fact, only 10 out of the 27 cases are feasible. Below
we enumerate some of the cases and either explain why the case is
impossible or else show that the triangle inequality holds.
• ddd: Not possible: the n+ 1-th bit can be 0 or 1; since there are
three binarized series x′, y′, and z′, by the pigeonhole principle at
least two of them must agree in that bit. Similar arguments show the
impossibility of the following cases: daa, dan, dnn, dna, ada, adn,
ndn, nda, and, aad, nad, nnd, aan, naa, ana, nnn.
• dda: The distance between x and y changes by Δ(3) = (1 + α)n,
as does the distance between x and z. The distance between z and y
changes by Δ(2) = (1+ α)n − (1 + α)kp where kp is the length of
the last run between z and y. We have (1 +α)n ≤ (1 +α)n + (1+
α)n − (1 + α)kp , or 0 ≤ (1 + α)n − (1 + α)kp . Since kp ≤ n, the
inequality holds. Symmetric case: dad.
• ddn: The distance between x and y changes by Δ(3) = (1 + α)n,
as does the distance between x and z. The distance between z and y
changes by Δ(1) = (1 + α)n − 1. We have (1 + α)n ≤ (1 + α)n +
(1 + α)n − 1, or 0 ≤ (1 + α)n − 1. Since n > 0, the inequality
holds. Symmetric case: dnd.
• add: The distance between x and y changes by Δ(2) = (1+α)n−
(1 + α)kp where kp is the length of the last run between x and y.
The distance between x and z changes by Δ(3) = (1+α)n, as does

the distance between z and y. We have (1 + α)n − (1 + α)kp ≤
(1 + α)n + (1 + α)n, or −(1 + α)kp ≤ (1 + α)n. The right-hand
side must be positive, so the inequality holds.
• nan: The distance between x and y changes by Δ(1) = (1 + α)n,
as does the distance between z and y. The distance between x and z
changes by Δ(2) = (1+α)n− (1+α)kp , where kp is the length of
the lst run between x and y. Symmetric case: nna.
• ndd: The distance between x and y changes by Δ(1) = (1+α)n−1.
The distance between x and z, as well as the distance between z and
y, changes by (1+α)n. We have (1+α)n−1 ≤ (1+α)n+(1+α)n,
or 0 ≤ (1 + α)n + 1, so the inequality holds.
• ann: The distance between x and y changes by Δ(3) = (1+α)n−
(1+α)kp , where kp is the length of the last run between x and y. The
distance between x and z changes by Δ(1) = (1+α)n−1, as does the

distance between z and y. We have (1+α)n−(1+α)kp ≤ (1+α)n−
1 + (1 + α)n − 1, or equivalently 0 ≤ (1 + α)n + (1 + α)kp − 2.
(1 + α)n + (1 + α)kp ≤ 2, since each term is at least 1, so the
inequality holds.
• aaa: Let the length of last run between x and y be denoted kp1
and the length of the last run between x and z be noted kp2. Then
the distance between x and y increases by Δ(2) = (1 + α)n −
(1 + α)kp1 , and the distance between x and z increases by Δ(2) =
(1+α)n− (1+α)kp2 . Since the new bit has added onto an existing
run between x and y of length kp1, and an existing run between x
and z of length kp2, the longest the last run between z and y can be
is min[kp1, kp2]. For example, if the run between x and y is 3 bits
and the run between x and z is 5 bits, the run between y and z can
be at most 3 bits. Therefore, the distance between z and y changes
by Δ(2) = (1 + α)n − (1 + α)min[kp1,kp2].

If kp1 < kp2, the inequality becomes (1 + α)n − (1 + α)kp1 ≤
(1 + α)n − (1 + α)kp2 + (1 + α)n − (1 + α)kp1 , or equivalently

0 ≤ (1 + α)n − (1 + α)kp2 . Since kp2 ≤ n, the inequality holds.

If kp1 > kp2, the inequality becomes (1 + α)n − (1 + α)kp1 ≤
(1 + α)n − (1 + α)kp2 + (1 + α)n − (1 + α)kp2 , or equivalently

0 ≤ (1 + α)n − (1 + α)kp2 + [(1 + α)kp1 − (1 + α)kp2 ]. The

bracketed term must be greater than 0 because kp1 > kp2. Since

(1+α)n− (1+α)kp2 because kp2 ≤ n, we get a sum of two terms

that are each greater than or equal to 0, so the inequality holds.
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