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Abstract

Motivated by the problem of human-trafficking, where
it is often observed that criminal organizations are
linked and behave similarly over time, we introduce
the problem of Coupled Clustering of Time-series and
their underlying Network. The goal is to find tightly
connected subgroups of nodes that also have simi-
lar node-specific time series (temporal—not necessarily
structural—behavior). We formulate the problem as a
coupled matrix factorization for the time series, com-
bined with regularization for network smoothness. We
propose CCTN, and an incrementally-updated coun-
terpart, CCTN-inc, which efficiently handles network
updates. Extensive experiments show that CCTN is up
to 4× more accurate than baselines that consider graph
structure or time series alone, and CCTN-inc is up to
55× faster than CCTN. As an application, we explore
an exclusive database with millions of online ads on hu-
man trafficking, and successfully deploy our technique
to detect criminal organizations.

1 Introduction

Clustering, or finding groups of similar entities, is a
fundamental task in data mining and machine learning,
with applications in human mobility analysis, sensor
data analytics in healthcare, intelligent urban systems,
climate monitoring, and more. In many applications,
time series and networks co-occur and may need to be
clustered jointly instead of individually [5, 17, 12, 15, 6].

In this work we introduce the challenging problem of
Coupled Clustering of (entity-specific) Time-series
and their underlying Network, where we aim to
group entities into ‘temporally ’ and ‘structurally ’ co-
herent clusters (Fig. 1). Our rationale is that jointly
considering network-centric and temporal (but not nec-
essarily structural) behavioral features should lead to
better clustering results than treating each data modal-
ity separately. We give two motivating examples.

Example 1. (Human trafficking) The Internet
plays a key role in both enabling and combating human-
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trafficking. For instance, classified ads that have
contact information for the interested parties have been
shown to be useful for discovering criminal networks.
Based on our analysis of human-trafficking data, we
assume that (1) phone numbers belonging to the same
criminal organization often co-appear in ads; and
(2) ads from the same orgs have similar content (e.g.,
sentences, expressions). Thus, the problem of detecting
criminal organizations can be framed as coupled clus-
tering of (1) the phone number co-occurrence network
and (2) a set of phone number-specific time series that
capture ad content similarity (e.g., per-day average
content similarity between the posted ads that mention
the same phone number, shown as X1 in Fig. 1).

Example 2. (Social Networks) In many cases, the
topology of interactions between users is augmented
with information about their temporal behaviors. For
instance, in location-based social networks, the users can
be characterized by their mobility or check-in patterns,
whereas in scientific collaboration networks they can be
described by their temporal topical interests.

In these examples, there are two constituent prob-
lems: time-series clustering and graph clustering. Both
of them have been studied extensively but separately
in the literature [5, 23, 17, 12, 15, 6, 2, 11]. However,
in these and other real scenarios, the time series corre-
spond to entities that do not occur in isolation, but are
related via an underlying network (e.g., the phone num-
ber co-occurrence network in Example 1). On one hand,
most existing time-series clustering methods simply ig-
nore this underlying structure or lack a principled way
of incorporating it. On the other hand, most graph clus-
tering methods aim to find tightly connected subgraphs
or communities in static and dynamic networks [27] by
optimizing structural quantities, such as modularity or
conductance [15, 6]. Our proposed problem of coupled
time-series and network clustering differs from dynamic
graph clustering [19]: the former does not necessarily
require snapshots of a graph over time; it can operate
on a single network with multiple node-specific tempo-
ral behaviors or time series. It is also different from
prior work that detects correlated changes in dynamic
networks [8] based on the graph structure alone.

In this work we aim to fill in this gap. Specifically,
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Figure 1: Human trafficking example: Nine phone numbers (nodes) form three clusters with tight connections,
and similar temporal behaviors. The matrix on the left illustrates the representation of the network structure
(A) and the ones on the right show the different types of node-specific behaviors over time (Xk).

we introduce the coupled clustering problem which
aims to group nodes such that the similarity of their
time-series behaviors and their structural connectivity
is maximized per cluster. We formulate the problem as
an intuitive latent time-series clustering problem joint
with graph regularization, and show that it admits a
standard quadratic programming solution. In more
detail, our contributions are:
•Novel Formulation: Motivated by real applications,
we propose the problem of finding groups of nodes that
are both densely connected (network structure) and
temporally coherent (time series of, potentially, non-
structural behaviors). § 2
• Principled Methods: To effectively solve the prob-
lem, we propose CCTN and its counterpart CCTN-inc
that efficiently handles updates (e.g., new nodes/edges
and observations in the time series). § 2-3
• Extensive Experiments: We perform experiments
on synthetic and real-world networks with up to 6.9
million edges, and show the effectiveness and efficiency
of our proposed methods over the baseline methods. § 4
• Application: We explore an exclusive database
of millions of online ads on human-trafficking, and
show the potential of CCTN in detecting criminal
organizations. § 4

The code and the supplementary material is hosted
at https://github.com/yikeliu/CCTN.

2 Proposed Problem

Let G = (V, E) be a weighted graph with n = |V| nodes
and m = |E| edges, and A be its weighted adjacency
matrix. We assume that each node i is associated
with K different types of time series (e.g., K different
behavioral patterns). We denote Xk ∈ Rn×T as the
stacked matrix where row i corresponds to the kth type
time-series of node i in the network.

In Example 1 (Fig. 1), the network based on human
trafficking activity consists of phone numbers (nodes)
that are linked if they appeared in the same online ad,
with link or edge weight equal to their number of co-
appearances. The first temporal behavior of each node

Table 1: Major symbols and definitions.

Notation Description

G(V, E) graph
V, n = |V| node-set and number of nodes of G, resp.
E , m = |E| edge-set and number of edges of G, resp.
A adjacency matrix of G, with entries a(i, j)
D diagonal degree matrix, d(i, i) =

∑
j a(i, j) & d(i, j) = 0 o/w

L Laplacian matrix, L = D−A
Xk n× T stacked matrix of the qth time series type per node
C n× d embedded-clustering matrix (with node embeddings)
W d× T stacked basis matrix of temporal patterns
c n× 1 vector with the cluster assignments per node
d dimensionality of embedding for time-series patterns
t, T timestamp and total number of timestamps, respectively

is the per-day average content similarity between the
posted ads that mention the phone number. The second
behavior is its per-day PageRank

degree -ratio, which can capture

unusual structural connectivity patterns [18].

2.1 Problem Formulation As we mentioned above,
we focus on the problem of clustering nodes that also
have similar observed temporal behaviors. For consis-
tency with the typical time-series or graph clustering
problems, we make the following explicit assumptions:

(A1) Node Temporal Behavior Similarity. Nodes
from the same cluster have similar patterns in the
kth time-series type (for types k = 1, . . . ,K).

(A2) Graph Smoothness. If two nodes are connected,
their cluster assignments are similar. Also, the
stronger the connection between them, the more
likely they are to belong to the same cluster.

These assumptions align well with our motivating ex-
ample. In human-trafficking, it is believed that linked
phone numbers that have similar neighbors (A2) and
behave similarly over time (A1)—e.g., with high aver-
age content similarity in their ads—may belong to the
same criminal organization.

With these assumptions, we establish our model
for the coupled clustering of time-series and network
problem. We propose to embed the node-specific time-
series patterns in a latent d-dimensional space using two
factors: (1) a basis consisting of d time-series patterns
which are stacked by row in matrix W ∈ Rd×T , and
(2) a matrix C ∈ Rn×d that describes the temporal
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behavior of each node as a weighted combination of the
basis. We call C the embedded-clustering matrix, since
similarities among its rows represent similar temporal
behaviors among the corresponding nodes. Based on
this representation, we can summarize the time-series
patterns of all the nodes as follows:

(2.1) X̃k = C ·W,

where the same factors W and C are used to describe
the various types of true temporal behaviors, Xk. This
model has several advantages: (1) it allows us to couple
the various temporal behaviors and express them in
terms of the same basis of temporal patterns, and (2) it
constrains and guarantees a solution to our proposed
problem. As shown below, if the temporal behaviors
were modeled independently (i.e., via a different basis
of temporal patterns Wk per type k), our formulation
would admit any arbitrary solution for the embedded-
clustering matrix C, which is not meaningful.

By combining this model together with graph reg-
ularization, we formulate the coupled clustering of
time-series and network problem.

Problem 1. Let G(V, E) be a network where each
node u is associated with K different types of time-
series denoted as Xk(u) ∈ R1×T . Then, the coupled
clustering problem aims to assign to each node u a
latent feature vector C(u) ∈ R1×d, which can then be
projected to a cluster assignment c(u) ∈ N, such that:

(2.2) arg min
C,W

{
K∑
k=1

ak · ‖Xk − X̃k‖2F + λ · Tr(CTLC)}

where ak controls the importance of the kth time-
series behavior, X̃k = C ·W, W is the basis time-
series matrix, || · ||F is the Frobenius norm of the
enclosed matrix, L is the Laplacian matrix of G, Tr(·)
is the trace of the corresponding matrix, and λ is a
regularization parameter.

The first term of Eq. (2.2) represents the coupled
clustering of the nodes based on their K types of
temporal behavior. The clustering is given by our
proposed model in Eq. (2.1). Our goal is to find the
matrices W and C that best represent coherent time-
series clusters across all behavior types. We note that
a model with different basis patterns Wk would lead
to trivial clustering solutions: for any fixed C, it would
be possible to find a set of W1, . . . ,WK that satisfy
Eq. (2.2). In the human-trafficking example, the first
term finds a joint latent representation for the temporal
content similarity of ads (X1 in Fig. 1) and the temporal
structural patterns (X2 or the PageRank

degree -ratio per phone

number and day). The second term of Eq. (2.2)
imposes a graph smoothness constraint over the cluster

assignments of the nodes (regularization). Intuitively, it
forces the temporally coherent nodes to also have strong
connectivity, thus satisfying assumption (A2). The
influence of each term on the final clustering depends
on the parameters ak, λ, which we discuss in detail
in the supplemental material. In Example 1, this
constraint ‘refines’ the candidate criminal organizations
that have temporally coherent behaviors by attaching
well-connected phone numbers to them (thus, leading
to also structurally coherent clusters).

2.2 Proposed Algorithm: CCTN Optimizing
Problem 1 requires minimization with respect to two
matrices, C and W. To render the problem tractable,
we devise an alternating process: (1) We fix C and turn
Problem 1 into a relatively easier quadratic problem;
(2) We fix W and turn Problem 1 into a mixed integer
programming problem (Thm 1).

Next, we give the equations that need to be solved
for the coupled clustering of time-series and network
problem. These will be the building blocks of our
proposed algorithm, CCTN.

Theorem 1. For a fixed clustering embedding C, the
basis time-series matrix W is the solution to:

(2.3) (
∑
k akC

TC)W = (
∑
k akC

TXk)

where CT denotes the transpose of matrix C.
For a fixed basis time-series matrix W, the clustering
embedding C can be found by solving the equation:

(2.4) C
∑
k akWWT + λLC =

∑
k akXkW

T ,

which corresponds to a Mixed-Integer Programming
problem. Equation (2.4) is a Sylvester equation.

Proof. See Appendix A in the supplemental material.

The linear system in Eq. (2.3) can be solved by
randomized Kaczmarz algorithm [28]. This randomized
iterative method can find W with expected exponen-
tial rate of convergence. To solve the Sylvester equa-
tion (2.4), we employ the scheme in [3] and rewrite it as
an equation with Kronecker product (denoted as ⊗):

(If⊗λL+(
∑
k

akWWT )T⊗In)⊗vec(C) = vec(
∑
k

akXkW
T )

where vec() is the vectorization operator that takes
a matrix and converts it to a vector by stacking its
columns. The solution of C can be computed numer-
ically by the Bartels-Stewart [3] algorithm. This al-
gorithm first computes the Schur decomposition of the
two matrices λL and −

∑
k akXkW

T in Eq. (2.4) using
a QR algorithm, and then solves the resulting triangular
system via back-substitution.
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Lemma 1. The MIP problem of Eq. (2.4) has a
unique solution iff the nf × nf matrix If ⊗ λL +
(
∑
k akWWT )T ⊗ In is invertible—i.e., if L and∑
k akXkW

T do not have common eigenvalues.

The computational cost of the original Bartels-
Stewart [3] algorithm is O(n3). However, faster parallel
solvers of large-scale Sylvester equations have been
proposed, such as the Hessenberg-Schur method [14],
and H-matrix based sign function iteration [4], where
large matrices are represented by sparse hierarchical
matrices. The latter method is O(n log2 n).

Algorithm. Based on Theorem 1 and the trans-
formations of its main equations described above, we
propose the CCTN method, whose pseudocode is given
in Algorithm 1. Lines 5-9 describe the main part of our
method, which seeks the solution in an iterative pro-
cess, until convergence (line 9). In the absence of other
information, the initialization of the matrices C and
W is random (lines 3-4). After finding the embedded-
clustering matrix C, CCTN treats each row as an ob-
servation (which corresponds to a node) and applies a
clustering technique in order to find similar nodes based
on their latent representations in Eq. 2.2. In practice,
any choice for clustering works for this step (e.g., k-
means). We discuss our choices in the experiments.

Algorithm 1 CCTN: Coupled Clust. of Time-series & Network

Input: Graph G(V, E); stacked matrices of k-type time-
series {Xk} with T timesteps, parameters ak and λ,
dimensionality d
Output: Vector with cluster assignments c

1: ε = 10−6, τmax = 100 // Constants for convergence
2: τ = 0 // Iteration # initialization
3: C(τ) = rand(n, d) // n = |V|
4: W(τ) = rand(d, T )
5: repeat
6: τ = τ + 1

// Step 1: Update W using Eq. (2.3)
7: W(τ) = (

∑
k akC(τ−1)

TC(τ−1))
−1(

∑
k akC

T
(τ−1)Xk)

// Step 2: Update C by solving Eq. (2.4) following [4]
8: C(τ)

∑
k akW(τ−1)W

T
(τ−1) + λLC(τ) =

∑
k akXkW

T
(τ−1)

9: until (||C(τ) − C(τ−1)||1 < ε & ||W(τ) −W(τ−1)||1 < ε) or
τ > τmax

// Step 3: Assign the nodes to clusters based on the
inferred embeddings in C (each row is an ‘observation’).

10: c = cluster rows(C(τ))
11: return c

2.3 Complexity Analysis In each iteration of Algo-
rithm 1, the computation is composed of two steps: up-
date W (Step 1) and update C (Step 2). W is updated
by randomized Kaczmarz algorithm [28]. The computa-

tional complexity of solving a linear system Mx = b is
O(nKtK), where M ∈ RmK×nK and tK is the number of
iterations of random Kaczmarz update. For mK 6= nK ,
we have tK = 2nK

(1−√y)2 log 1
εK

, where y := nK
mK

, and εK
is the accuracy of the randomized Kaczmarz algorithm.
In CCTN, we have a square matrix (M =

∑
k akC

TC),
but since it has exponential convergence [28], tK will
be very small (tK ∼ 5 in practice). Updating C with
the H-matrix based sign function iteration [4] has com-
plexity O(n log2 n). Hence, the complexity of CCTN is
O((dtK + (n log2 n)).

3 CCTN-inc: Incremental Updates

In many applications, including our motivating appli-
cation of human-trafficking, the data are changing over
time: new nodes (i.e., phone numbers) and edges (new
co-occurrences) are added to the network, and new
timestamps are added to the behavioral time series for
the existing nodes (e.g., content similarity on the new
days). In our experiments, we observed that for syn-
thetic data (Kronecker graphs) with more than 6.6k
nodes, the runtime of CCTN exceeds a week. Moreover,
clustering millions of nodes is quite expensive. Thus, we
propose the problem of incremental coupled clustering.

3.1 Problem Formulation The problem of Incre-
mental Coupled Clustering seeks to efficiently han-
dle incremental updates in the network structure and
the time series, so that the computation that needs to
be performed per timestamp is minimized.

Problem 2. Let A′ ∈ Rn′×n′ and X′k ∈ Rn′×T ′

be the augmented adjacency matrix with n′ nodes
and the stacked matrix of the kth type time series
data with T ′ timestamps, respectively. Let also
C and W be the solutions of Problem 1. The
Incremental Coupled Clustering problem aims to find
the perturbations ∆W and ∆C in the matrices of
basis temporal behaviors and cluster embeddings s.t.
the new solutions are expressed as W′ = W + ∆W
and C′ = C + ∆C, respectively:

arg minC′,W′{
∑K
k=1 ak ·‖X′k−X̃′k‖2F+λ·Tr(C′TL′C′)}

where ak and λ remain the same as in CCTN, L′ is the
updated Laplacian matrix of A′, and X̃′k = C′ ·W′.

Thus, this problem seeks to incrementally update the
cluster assignment vector c′, obtained by projecting the
new embedded-clustering matrix C′.

3.2 Incremental Algorithm: CCTN-inc To de-
rive the solution of the incremental problem, we lever-
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age small perturbations ∆Z for each matrix Z that is
involved in the derivations. Specifically, we rewrite the
incremental adjacency matrix as (1) the original ma-
trix and (2) the difference-matrix with the difference
in weights between existing nodes and the connections
to new nodes: A′ = A(n′×n′) + ∆A. In the human-
trafficking example, ∆A contains new phone numbers
that appeared in ads published after time T , and new
edges between numbers that co-appeared in ads after T .

Similarly the stacked matrix of kth-type time series
and the Laplacian of the new graph can be written as:
X′k = Xk,(n′×T ′) + ∆Xk and L′ = D′−A′ = L + ∆L.
In our example, X′k has additional rows for the new
nodes (past the original n) and more columns for the
new timestamps (past T ).

Based on the above definitions, we can compute the
incremental matrix W′ by simply computing ∆W and
adding it to the solution of the non-incremental version.
As in the solution of Problem 1, in the second step, we
fix W′ and find the new solution for C′.

Theorem 2. For a fixed clustering embedding C′,
the difference ∆W in the stacked matrix of the d base
time series patterns is given by:

(3.5) ∆W =
(∑

k akC
′TC′

)−1∑
k akC

′T∆Xk

For a fixed basis time-series matrix W′ (defined in
Eq. (3.5)), the difference in the embedded-clustering
matrix ∆C is approximated by solving the following
Sylvester equation:

∆C
∑
k

akWWT + λL∆C =
∑
k

ak(Xk(∆W)T

+ (∆Xk)WT −C(∆W)WT −CW(∆W)T + λ(∆L)C).

(3.6)

Proof. See Appendix A in the supplemental material.

Algorithm. Based on Theorem 2, we propose
CCTN-inc, an effective and fast approximation of
CCTN, which handles incremental updates in the net-
work structure, the introduction of new nodes, and
changes in the behavioral patterns of existing nodes.
We give the high-level pseudocode of CCTN-inc in Al-
gorithm 2 in the supplemental material (Appendix B).

3.3 Complexity Analysis Although Eq. (3.5) in-
volves inverting a matrix, the computation is not pro-
hibitive due to its very small size. Matrix C′ has size
n× d, and thus C′TC′ (which is the matrix that needs
to be inverted) is a d × d matrix. In practice, the di-
mensionality d of the embedding is significantly smaller
than the number of nodes n, and most likely is in the

order of 10-20 features. Equation (3.6) in Theorem 2
is still a Sylvester equation that can be solved with the
Bartels-Stewart algorithm [3], as in CCTN. Due to the
significant sparsity of ∆C, the computation of the in-
cremental matrix is sub-quadratic, O(n log2 n) [4].

4 Experiments

Our experiments are geared toward answering the fol-
lowing questions: (1) How effective is CCTN in terms
of identifying temporally and structurally coherent clus-
ters? (2) How well does CCTN-inc approximate
CCTN? (3) Do CCTN and CCTN-inc scale well to
large datasets? (4) Does CCTN generate intuitive clus-
ters in real applications? (5) How robust is CCTN to
different parameter settings? Before we present our re-
sults, we discuss our datasets, baselines and experimen-
tal setup. We answer question (5) in Appendix E.

4.1 Data We use both synthetic and real datasets.
Synthetic Data. We generate three cliques of different
sizes (50, 100, and 200 nodes), with random, sparse
connections between them. For simplicity we treat
the graph as unweighted, and keep the graph structure
constant over time (i.e., we use one static network). For
the node-specific temporal behavior, we either randomly
generate time series, or extract time series of content
similarity from the real human-trafficking HT-1 data
(described below), and add six types of noise (Table 2).

Real Data. We also use 3 exclusive real datasets: two
in human-trafficking domain (HT-1/HT-1M, HT-2),
and one in the military domain (MITRE).
• Human-trafficking data 1 (HT-1, HT-1M):

This is a labeled dataset of advertisements assigned to
clusters. For each advertisement, we have all or part
of the following information: {region, phone number,
text, title, post time, age, user location, city, cluster
id}. The phone numbers are assigned cluster ids by
domain experts (ground truth).

We create the co-occurrence graph (temporal and
aggregated) on phone numbers by adding edges between
phone numbers that appear in the same ad, and weigh-
ing them by the frequency of their co-occurrence. HT-
1M denotes the manipulated graph of HT-1 where at-
tackers randomly connect their phone numbers to pub-
lic phone numbers such as AT&T service number. The
node-specific temporal behaviors consist of: (1) Struc-
tural time series of PageRank

degree -ratio, which can capture

anomalous patterns [18] and is obtained from the tem-
poral graphs—i.e., X1 = Xstruc; (2) Content time series
for the average pairwise Jaccard index across the ads
with the same phone number (during the same time
interval)—i.e., X2 = Xcont. Although we use k = 2
temporal behaviors, CCTN can scale with greater k.
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Table 2: Synthetic data: Description of the six cases that we designed for evaluation. For each cluster, we generate
for its constituent nodes a specific type of time series per case (e.g., identical, correlated, noisy).

Case No. Time series per cluster Description of the clusters in terms of their nodes’ time series

1 Random identical Ci = {xi(t), . . . , xi(t)}, i ∈ {1, 2, 3}, xi randomly generated
2 Informed identical Ci = {xi(t), . . . , xi(t)}, i ∈ {1, 2, 3}, xi extracted from real data
3 Correlated Ci = {a1(xi(t) + b1), . . . , a|Ci|xi(t+ b|Ci|)}, i ∈ {1, 2, 3}, xi extracted from real data (|Ci|: size of ith cluster)
4 Noisy Ci = {xi(t) + ei(t), . . . , xi(t) + ei(t)}, i ∈ {1, 2, 3}, xi extracted from real data, ei(t) ∼ N (1, 0)
5 Anti-correlated Ci = {xi(t), . . . ,−xi(t)}, i ∈ {1, 2, 3}, xi extracted from real data, Ci split at half
6 Informed split C1,2 = {x1,2(t), . . . , x1,2(t)}, C3 = {x1(t), . . . , x2(t)}, x1,2,3 extracted from real data, C3 split at half

Table 3: Real data

Dataset Nodes Edges Timestamps Description

HT-1 60 437 1 241 773 13 labeled, human-trafficking
HT-2 61 155 129 196 60 unlabeled, human-trafficking

MITRE 3 813 6 892 425 335 labeled, Twitter data

• Human-trafficking data 2 (HT-2): This is an
unlabeled dataset of ads, for which we have all or part
of the following information: {description, uri, date of
creation, contact information, name, location}. Graphs
and time series are generated the same way as for HT-1.

•MITRE data: This labeled Twitter dataset [29]
is annotated with both GEO-location and social event
forecasting results. Each location is assigned to a
cluster by domain experts, based on event types and
users. We generate a graph that consists of locations
(nodes) connected by edges that are weighted by their
geographic distance (based on longitude and latitude).
Edges with distances above d = 1000 miles are pruned.
The temporal behaviors include: (1) the structural
time-series of the PageRank

degree -ratio—i.e., X1 = Xstruc; and

(2) the activity-specific behavior consisting of the count
of events at each location over time—i.e., X2 = Xevent.

4.2 Baselines We choose methods that fall into the
two subproblems that we solve: (1) time-series cluster-
ing, from which we pick two recent, best-performing
works, k-Shape [25] and TADPole [5]; and (2) graph
clustering on the aggregated graph, from which we
choose spectral clustering [15] and Louvain [6]. We de-
scribe the baselines in Appendix C.

4.3 Experimental Setup For CCTN and CCTN-
inc, practitioners can choose any clustering method
that takes in feature vectors of the CCTN node em-
beddings in C (line 10 of Alg. 1). For simplicity, we
exploit the widely-used k-means clustering [24] for la-
beled data, and x-means [16] for unlabeled data with
unknown number of clusters. To show the effect of pa-
rameters on the performance of CCTN, we report the
results on two variants: (1) the ‘default ’ case, where
we set a1 = a2 = 1, λ = 0.01, d = 3; and (2) the
‘best ’ case, where the parameters are chosen via grid
search on a small random subset of the data. The sam-
ple we used in our experiments consists of 1/10th of the
data for MITRE, and 1/100th of the HT-1 and HT-1M

data. We performed grid search for the following ranges:
a1 ∈ (0, 10], a2 ∈ (0, 10], λ ∈ (0, 10], d ∈ (0, 10] with an
interval of two, hence the ‘best’ is not the globally best
result. Results on CCTN’s robustness to parameter
settings are in Appendix E. We ran the CCTN until
convergence (line 9 in Alg. 1) for all the datasets except
for HT-1, for which we set τmax = 10 iterations.

For the baselines we used the default values of their
parameters: resolution τL = 10−4 for Louvain, band size
0.08 for DTW, and cut off distance 1.4619 for TADPole.

All the experiments were run on Intel(R) Xeon(R)
CPU E5-1620 v3 @ 3.50GHz with 264GB RAM.

Evaluation Since our objective is to find coher-
ent groups of nodes, we focus on the evaluation of the
embedded-clustering matrix C and the clustering re-
sults. We omit a detailed analysis of the auxiliary vari-
able W due to space limitations. For the performance
of cluster recovery, we use (1) normalized mutual infor-
mation (NMI) and (2) Rand index, which measure the
agreement between the found and ground-truth clusters,
but capture different information. The results are gen-
erally consistent across the two metrics; for brevity we
give the results based on Rand index in Appendix D.

4.4 Accuracy - (1) CCTN. First, we investigate
how CCTN compares to the baselines in terms of
effectiveness in identifying temporally and structurally
coherent clusters. We present the NMI of the clusterings
that all methods produce on the synthetic datasets
in Fig. 2a and on the real datasets in Fig. 2b. We
report the results based on the Rand index measure in
Fig. 6 (Appendix D). For the synthetic data, where the
structural time series are constant (due to the static
network), TADPole is less effective when leveraging
Xstruc in addition to Xcont. For that reason, we only
report its results using Xcont.

Observation 1. CCTN outperforms the baselines on
the real data, and is sometimes tied with Louvain on
the synthetic data. The baselines have more variable
performance across datasets.

Louvain, which usually outperforms spectral clus-
tering, gives equally good results for HT-1, but
has significantly inferior performance on HT-1M and
MITRE. Since it only relies on the graph structure, it

Copyright c© 2019 by SIAM
Unauthorized reproduction of this article is prohibited



(a) Synthetic data: CCTN performs better than the baselines on

difficult cases or equally well on easy cases.

(b) Real data: Overall, CCTN performs consistently better than

or equally well as the baseline methods.

Figure 2: Accuracy of CCTN and CCTN-inc on synthetic and real data.

Figure 3: MITRE: CCTN-inc approximates CCTN
well. They yield similar clusterings.

is heavily impacted by graph noise, as shown by its per-
formance on the manipulated HT-1M dataset (Fig. 2b).
K-Shape and TADPole, which ignore the graph struc-
ture, tend to perform worse than CCTN, especially on
the real datasets (NMI < 0.1). By combining the tem-
poral and structural aspects, CCTN is more robust: it
achieves up to NMI = 0.6 for real data, and often per-
fect performance in the synthetic cases.

(2) CCTN-inc. Second, we explore how well CCTN-
inc approximates the clusterings that our exact ap-
proach, CCTN, generates. To that end, we split the
real labeled data into two parts: (1) the first x times-
tamps (or the ‘base size’), which are used to create the
input graph and time series, as described in Sec. 4.1;
and (2) the future timestamps. Then, we compute the
agreement between the clustering that CCTN-inc out-
puts after incremental updates for y timestamps, and
the clustering of CCTN when applied to the (x + y)
timestamps all together. For brevity, in Fig. 3, we show
the agreement (NMI) of the two methods on MITRE
by varying the base size x, and for y ∈ {1, 10} steps
of incremental updates. The results based on Rand in-
dex are given in Fig. 7 (Appendix D). The results are
consistent for other values of y and the other datasets.

Observation 2. CCTN-inc is a good approximation
of CCTN (wrt both NMI and Rand index), independent
of the incremental interval y. The accuracy varies for
different base size x, but remains relatively stable. As
expected, performing more incremental updates (e.g.,
y = 10) leads to lower, but still high, agreement.

We note that in this experiment we do not compare
the CCTN-inc clustering with the ground-truth labels,
because its performance is measured by how well it
approximates CCTN and how efficient it is (Sec. 4.5).

4.5 Runtime - (1) CCTN. Third, we evaluate
how well CCTN scales with the size of the data,
and specifically with (i) the number of nodes in the
aggregated graph, and (ii) the number of timestamps.

For experiment (i), we fix the number of timestamps
to 10, and generate the aggregated graph by combining
10 Kronecker graphs [20] of different sizes (given random
seed matrices). Assuming

√
n/2 clusters (which is the

rule of thumb for choosing number of clusters [1]), we
generate that many random time series, and randomly
assign them to the n nodes. For experiment (ii), we
generate synthetic data in the same way, but fix the
number of nodes to 1 024 and vary the number of
timestamps of the time series. We demonstrate the
results in Fig. 4a.

Observation 3. The runtime of CCTN increases
subquadratically with the number of nodes, and smooths
out to near-linear when the number of nodes becomes
large. Its efficiency is independent of the number of
timestamps T (right plot in Fig. 4a).

(2) CCTN-inc. Finally, we compare CCTN-inc to
CCTN to show its efficiency benefits. Figure 4b shows
the runtime of the two methods on MITRE for different
combinations of x and y (explained in Sec. 4.4).

Observation 4. CCTN-inc is up to 30 − 55× faster
than CCTN, due to the sparser matrix computations
that it performs per update, and its faster convergence.

CCTN-inc usually converges in 1/50 ∼ 1/30 of
the iterations that CCTN needs for real data. This
contributes to the significant reduction in runtime.

5 Case Study on Real Data

To evaluate whether CCTN finds intuitive clusters in
real applications, we apply it to the human-trafficking
HT-2 dataset. Among the 61 155 nodes in HT-2,
CCTN identified 15 clusters, with size ranging from 129
to 31 060 nodes. All the clusters have numerous phone
number pairs that have appeared in similar ads.

In Fig. 5, we show a randomly-picked exam-
ple consisting of phone numbers 1-3236****** and 1-
3232******. Across the 60 timestamps, these phone
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(a) Runtime vs. number of nodes / number of time stamps (b) MITRE: Runtime of CCTN-inc vs. CCTN.

Figure 4: Runtime analysis.

Figure 5: Advertisements related to the phone numbers
1-3236****** and 1-3232******.

numbers have co-occurred 2 656 times in different ads
(high edge weight in the graph). Besides the high simi-
larity between the ads they co-occurred in, we also ob-
serve that many of the ads in which each phone num-
ber appeared alone have largely similar content (both in
text and images). In the bottom ad, which was posted
on Sep 1, ‘GRAND OPEN’ suggests that the service
was just opened. The top ad was posted several months
later, on Dec 27, yet it has very similar text and pictures
to the bottom ad (similar text is marked with the same
color). Though the original data extraction process did
not identify the ads to be at the same location (Long
Beach vs. the general Los Angeles area), CCTN has
identified two phone numbers pointing to exactly the
same address in the ads, which is clear evidence that
they belong to the same organization. Similar observa-
tions for many other pairs of phone numbers hold.

6 Related Work

We briefly review two related directions to our work.
Time-series Clustering. Time-series cluster-

ing [21] aims to group coherent time-series sequences

together based on a certain similarity measure of ei-
ther raw data or extracted features or representa-
tions [5, 10, 26]. Targeting imputation and prediction
for co-evolving higher-order time series, [7] jointly mod-
els them in a ‘network’ of time series and follows a tensor
decomposition approach. This model is more restrictive
than ours that loosely couples the network with the time
dimension. We present a set of other representative
works (not exhaustive) in Appendix F. In a nutshell,
our proposed approach has three main advantages com-
pared to the state-of-the-art approaches: (1) it combines
the strengths of both model-based similarity measure-
ment and low-dimension representation learning (i.e.,
cluster embedding); (2) it is built upon a unified frame-
work that performs representation learning, coherence
evaluation, and clustering simultaneously; and (3) it
utilizes rich meta-data information (e.g., co-occurrence
graphs) to improve the quality of clustering.

Graph Clustering. For an extensive review on
graph clustering, we refer the interested reader to two
surveys [27, 22]. Recent work [13] converts the time-
series clustering problem to graph clustering by first
creating a similarity graph where each node corresponds
to a time sequence and then applying modularity-based
clustering [6]. Moreover, there has been increasing
interest in jointly clustering attribute and relational
data. For instance, Cho et. al. [9] proposed a shared
latent space model for describing both network and
behavioral data. However, their work focused on static
behaviors/attributes only. Also, [8] extracts subgraphs
with similarly evolving structural patterns, but do not
take into account non-structural temporal behaviors.
Our work, on the other hand, explicitly addresses the
temporal aspect of the problem by representing each
node as a multivariate time series.

7 Conclusion

Motivated by the need to identify criminal organiza-
tions involved in human-trafficking (which are often re-
lated to each other, and behave similarly over time), we
introduced the problem of coupled clustering of time-
series and their underlying network. We formulated
it as an optimization over the time-series embeddings,
coupled with graph regularization. To solve it, we pro-
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posed CCTN, an efficient method that combines matrix
factorization and network embeddings, as well as an
incrementally-updated counterpart that efficiently ad-
justs the discovered clusters to the graph and tempo-
ral changes over time. Our experiments on synthetic
and large real data showed that our methods are up
to 4× more accurate than the baselines that ignore ei-
ther the graph structure or the time-series component.
We also demonstrated that CCTN produces sensible re-
sults on real human-trafficking data and identifies tem-
porally and structurally coherent clusters, which likely
represent criminal organizations.
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Supplementary Material

A Derivations and Proofs

In this section we provide the proofs for the two
main results behind our proposed methods, CCTN and
CCTN-inc.

Proof. [Theorem 1] When fixing variable C, we only
need to focus on the parts of the objective (2.2) that
depend on W, so the objective becomes:

(A.1) J(W) =
∑K
k=1 ak‖Xk −CW‖2F ,

which corresponds to a quadratic optimization function.
To optimize Eq. (A.1), we apply the first order optimal-
ity condition as follows:

∂J(W)
∂W = 2(

∑
k akC

TC)W)W − 2
∑
k akC

TXk = 0

Hence, W is the solution of linear equation (2.3).
When we fix W, we need to take into account the

parts of the objective function that depend on C:

(A.2) Q(C) =
∑K
k=1 ak‖Xk −CW‖2F + λTr(CTLC).

To minimizeQ(C) with respect to C, we take the partial
derivative and set it to 0:

∂Q(C)

∂C
= 0⇒ 2

∑
k

ak(CW −Xk)WT + 2λLC = 0.

By rearranging this equation, we obtain Eq. (2.4). �

Proof. [Thoerem 2] The embedded clustering matrix
C′ is fixed and initialized to the solution of the non-
incremental version, i.e., C′ = C. According to
Theorem 1, and using the notation that we introduced
for perturbations, we have:

W′ =

(∑
k

akC
′TC′

)−1∑
k

akC
′TX′k ⇒

W + ∆W =

(∑
k

akC
TC

)−1∑
k

akC
T (Xk + ∆Xk)

By using the formula for W from Theorem 1 and sub-
stituting it above, we obtain the expression in Eq. (3.5).
Then, we apply Theorem 1 to find the ‘ground truth’
solution of C′ (based on CCTN), when W′ is fixed:

C′
∑
k akW

′W′T + λL′C′ =
∑
k akX

′
kW

′T

By rewriting the last equation using the ∆-notation for
all the matrices that are involved, we obtain

(C + ∆C)
∑
k

ak(W + ∆W)(W + ∆W)T

+ λ(L + ∆L)(C + ∆C) =
∑
k

ak(Xk + ∆Xk)(W + ∆W)T

Based on the assumption that the perturbations are
all significantly sparser than the original matrices, we
can approximate the above equation by ignoring their
2nd-order terms. That is, we drop the terms of the form
(∆M)2, where M ∈ {C,W,L,Xk}. By expanding the
last equation and applying this matrix approximation,
we obtain Eq. (3.6). �

B CCTN-inc: Incremental Algorithm

In Sec. 3.2, we leveraged Theorem 2 to propose CCTN-
inc, an effective and fast approximation of CCTN,
which handles incremental updates in the network struc-
ture, the introduction of new nodes, and changes in the
behavioral patterns of existing nodes. In Algorithm 2,
we give the high-level pseudocode of CCTN-inc.

Algorithm 2 CCTN-inc: Incremental version of CCTN

Input: Graph G′(V ′, E ′); stacked matrices of k-type
time-series {X′k} with T ′ timesteps, basis matrix of
temporal patterns W and embedded-clustering matrix
C found by Alg. 1; parameters ak and λ, dimensionality
d (same as Alg. 1)
Output: Vector with cluster assignments c′

1: ε = 10−6, τmax = 100 // Constants for convergence
2: τ = 0 // Initialization of iteration #

// Initialization based on the solutions of Alg. 1
3: C′(τ) = C // Random init of rows of new nodes
4: W′

(τ) = W // Random init of cols of new timestamps
5: repeat
6: τ = τ + 1

// Step 1: Compute W′ via Eq. (3.5)
7: W′

(τ) = (
∑
k akC

′T
(τ−1)C

′)−1(
∑
k akC

′T
(τ−1)X

′
k)

// Step 2: Compute C′ via Eq. (3.6)
8:

∆C(τ)

∑
k

akW(τ)W
T
(τ) + λL∆C =

∑
k

ak(Xk(∆W(τ))
T

+ (∆Xk)W
T
(τ) −C(∆W(τ))W

T
(τ)

−C(τ)W(τ)(∆W(τ))
T

+ λ(∆L)C(τ))

9: until (||C′(τ) − C′(τ−1)||1 < ε & ||W′
(τ) −W′

(τ−1)||1 < ε) or
τ > τmax

// Step 3: Assign the nodes to clusters based on the
inferred embeddings in C’ (each row is an ‘observation’).

10: c′ = cluster rows(C′(τ))
11: return c′
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C Baselines

Here we present some details about the clustering meth-
ods that we considered as baselines in our experiments.
• Spectral clustering refers to a class of algorithms
that utilize eigendecomposition to identify community
structure. We utilize one such algorithm [15], which par-
titions a graph by performing k-means clustering on the
top-k eigenvectors of the input graph. The idea behind
this clustering is that nodes with similar connectivity
have similar eigen-scores in the top-k vectors, and thus
form clusters.

• Louvain is a modularity-based partitioning method
for detecting hierarchical community structure. The
method is iterative: (i) Each node is placed in its own
community. Then, the neighbors j of each node i are
considered, and i is moved to j’s community if the
move produces the maximum modularity gain. The
process is applied repeatedly until no further gain is
possible. (ii) A new graph is built whose supernodes
represent communities, and superedges are weighted by
the weighted sum of links between the two communities.
The algorithm typically converges after a few passes.

• k-Shape relies on a scalable iterative refinement pro-
cedure, which creates homogeneous and well-separated
clusters. As for the distance measure, k-Shape uses
a normalized version of the cross-correlation in order
to consider the shapes of time series while comparing
them. Based on the properties of this distance mea-
sure, a method is developed to compute cluster cen-
troids, which is used in every iteration to update the
assignment of time series to clusters.

• Based on DTW, TADPole uses a pruning strategy
that exploits both upper and lower bounds to remove
a large fraction of the expensive distance calculations.
This pruning strategy gives provably identical results
to the brute force algorithm, but is at least an order
of magnitude faster. It also uses a simple heuristic to
order the calculations, thus casting the clustering as an
anytime algorithm.

We discuss the parameter settings for the baselines
in Sec. 4.3, and the setup for this experiment in Sec. 4.4.

D Accuracy of Cluster Recovery

In Sec. 4.4, we presented the results from comparing
our method, CCTN, with the baselines in terms of
accuracy (i.e., agreement with the ground-truth clusters
in the labeled data). In the main paper, we included the
plots that compare the methods in terms of NMI. Here
we supplement our analysis with results on the Rand
index in Fig. 6. The trends are similar to the ones we
see for NMI, though the scores are consistently higher.
Overall, CCTN has consistently strong performance

across a wide variety of synthetic and real datasets,
unlike the baselines which exhibit wide variability in
their performance—for example, k-Shape works well
on MITRE in terms of the Rand index, but performs
poorly or worse than CCTN in the other real datasets
and many of the synthetic cases.

In Fig. 7, we also present Rand index-based results
about the approximation of CCTN by its incremental
counterpart, CCTN-inc. The setup for this experiment
is given in Sec. 4.4(2). We observe that, based on both
metrics, CCTN-inc approximates CCTN very well in
that it finds similar clusterings. The trends between
NMI and Rand index are similar, with Rand index being
consistently higher.

(a) Synthetic data: CCTN performs better than the baselines on

difficult cases or equally well on easy cases.

(b) Real data: Overall, CCTN performs consistently better than

or equally well as the baseline methods.

Figure 6: Rand index-based accuracy of CCTN and
CCTN-inc on synthetic and real data.

Figure 7: MITRE: CCTN-inc approximates CCTN
well based on both the NMI and Rand index metrics.
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(a) Sensitivity to a1. (b) Sensitivity to a2.

(c) Sensitivity to λ. (d) Sensitivity to d.

Figure 8: CCTN is robust with respect to the parameters. The different lines in the plots correspond to different
synthetic cases, as described in the rightmost plot (d).

E Sensitivity of Clustering

The last question that we raised in Sec. 4 is about the
robustness of CCTN to different parameter settings.
To answer this question, we experiment with differ-
ent combinations of parameters and evaluate the cor-
responding effect on clustering. In this experiment we
call a1 = a2 = λ = 1, d = 4 ‘default setting’. Note that
these values are different from the default case that we
discuss in Sec. 4.3. Then, we run CCTN on all the syn-
thetic cases of Table 2 by fixing all the parameters to
their default setting, with the exception of one param-
eter that we vary. The results are shown in Figure 8.

Observation 5. CCTN is generally robust to differ-
ent parameter settings. Based on the Rand index, it is
more sensitive to λ than the other parameters. Practi-
tioners may choose to tune λ primarily to achieve better
performance.

F Additional Related Work

We provide additional related work for our proposed
coupled clustering of time-series and network problem.

Time-series Clustering. We discuss a set of rep-

resentative works (not exhaustive) in Table 4 and refer
to the survey [21] for more details. Various time-series
clustering approaches focus on directly evaluating the
similarity of raw data [38, 5] or extract features from
raw data and then apply time-series clustering to the
feature representation [34]. Regardless of data source,
there are two completely different approaches of simi-
larity measurements: distance-based and model-based.
In the distance-based approach, coherence of time-series
sequences is evaluated with distance functions, e.g. Eu-
clidean distance function [41], Short time series dis-
tance [38], DTW distance [5], KL-divergence [32] etc.
In model-based approaches, coherence is evaluated with
model similarity, e.g. Hidden Markov Model [39] and
auto-regression moving average (ARMA) [10, 42].

Table 4: Qualitative comparison of related approaches.

Methods
Data Source Similarity

Raw Feature Representation Dist Model

[5, 38, 35, 32, 25] X X
[10, 42] X X

[36, 41, 12] X X
[34] X X
[39] X X X
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