
62

Graph Summarization Methods and Applications: A Survey

YIKE LIU, TARA SAFAVI, ABHILASH DIGHE, and DANAI KOUTRA, University of Michigan,

Ann Arbor

While advances in computing resources have made processing enormous amounts of data possible, human
ability to identify patterns in such data has not scaled accordingly. Efficient computational methods for con-
densing and simplifying data are thus becoming vital for extracting actionable insights. In particular, while
data summarization techniques have been studied extensively, only recently has summarizing interconnected
data, or graphs, become popular. This survey is a structured, comprehensive overview of the state-of-the-art
methods for summarizing graph data. We first broach the motivation behind and the challenges of graph sum-
marization. We then categorize summarization approaches by the type of graphs taken as input and further
organize each category by core methodology. Finally, we discuss applications of summarization on real-world
graphs and conclude by describing some open problems in the field.

CCS Concepts: • Mathematics of computing → Graph algorithms; • Information systems → Data

mining; Summarization; • Human-centered computing → Social network analysis; • Theory of com-

putation → Unsupervised learning and clustering; • Computing methodologies → Network science;

Additional Key Words and Phrases: Graph mining, graph summarization

ACM Reference format:

Yike Liu, Tara Safavi, Abhilash Dighe, and Danai Koutra. 2018. Graph Summarization Methods and Applica-
tions: A Survey. ACM Comput. Surv. 51, 3, Article 62 (June 2018), 34 pages.
https://doi.org/10.1145/3186727

1 INTRODUCTION

As technology advances, the amount of data that we generate and our ability to collect and archive
such data both increase continuously. Daily activities like social media interaction, web browsing,
product and service purchases, itineraries, and wellness sensors generate large amounts of data,
the analysis of which can immediately impact our lives. This abundance of generated data and its
velocity call for data summarization, one of the main data mining tasks.

Since summarization facilitates the identification of structure and meaning in data, the data
mining community has taken a strong interest in the task. Methods for a variety of data types

Y. Liu and T. Safavi contributed equally to this article.
This material was based on work supported in part by the National Science Foundation under grant IIS 1743088, Trove, and
the University of Michigan. Any opinions, findings, and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the National Science Foundation or other funding parties.
The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any
copyright notation here on.
Authors’ addresses: Y. Liu, T. Safavi, A. Dighe, and D. Koutra, Bob and Betty Beyster Building, 2260 Hayward St, Ann Arbor,
MI 48109; emails: {yikeliu, tsafavi, adighe, dkoutra}@umich.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 ACM 0360-0300/2018/06-ART62 $15.00
https://doi.org/10.1145/3186727

ACM Computing Surveys, Vol. 51, No. 3, Article 62. Publication date: June 2018.

https://doi.org/10.1145/3186727
mailto:permissions@acm.org
https://doi.org/10.1145/3186727

62:2 Y. Liu et al.

have been proposed: sequence data and events (Casas-Garriga 2005), itemsets and association rules
(Liu et al. 1999; Yan et al. 2005; Ordonez et al. 2006; Mampaey et al. 2011), spatial data (Lin et al.
2003), transactions and multi-modal databases (Wang and Karypis 2004; Chandola and Kumar 2005;
Shneiderman 2008; Xiang et al. 2010), data streams and time series (Cormode and Muthukrishnan
2005b; Palpanas et al. 2008), video and surveillance data (Pan et al. 2004; Damnjanovic et al. 2008),
and activity on social networks (Lin et al. 2008; Mehmood et al. 2013).

This survey focuses on the summarization of interconnected data (otherwise known as graphs or
networks), a problem in graph mining with connections to relational data management and visual-
ization. Graphs are ubiquitous, representing a variety of natural processes as diverse as friendships
between people (Wasserman and Galaskiewicz 1994; Backstrom et al. 2006; Devineni et al. 2015),
communication patterns (de Melo et al. 2010; Koutra et al. 2013; Yang et al. 2017), and interactions
between neurons in the brain (Sporns 2010; Brugere et al. 2016; Safavi et al. 2017).

Graph definitions and examples. Formally, a plain graph or network is an abstract data type
consisting of a finite set of vertices (nodes)V and a set of links (edges) E. The latter represent in-
teractions between pairs of vertices. A graph is often represented by its adjacency matrix A, which
can be binary, corresponding to whether there exists an interaction between two vertices, or nu-
merical, corresponding to the strength of the connection. We will refer to a graph with numerical
or categorical labels (attributes or annotations) for its nodes or edges as a labeled graph. A network
that changes over time (i.e., nodes/edges get added/deleted) is called dynamic or time-evolving and
is often described by a series of adjacency matrices, one per timestamp. Examples of graphs are
social networks, traffic networks, computer networks, phone call or messaging networks, loca-
tion check-in networks, protein–protein interaction networks, user–product review or purchase
networks, and functional or structural brain connectomes, among others.

Graph summarization benefits and applications. Graph summarization has various benefits,
which include the following:

—Reduction of data volume and storage: Graphs of real-world datasets are often massive. For
example, as of August 2017, the Facebook social network had 2 billion users, and more than
100 billion emails were exchanged daily. Summarization techniques produce small sum-
maries that require significantly less storage space than their original counterparts. Graph
summarization techniques can decrease the number of I/O operations, reduce communi-
cation volume between clusters in a distributed setting, allow loading the summary graph
into memory, and facilitate the use of graph visualization tools while avoiding the “hairball”
visualization problem.

—Speedup of graph algorithms and queries: While a plethora of graph analysis methods exist,
many cannot efficiently handle large graphs. Summarization techniques produce smaller
graphs that maintain the most salient information from the original graph. The resultant
summary graph can be queried, analyzed, and understood more efficiently with existing
tools and algorithms.

— Interactive analysis support: As the systems side makes advancements in interactive graph
analysis, summarization is introduced to handle information extraction and speed up user
analysis. The resultant graph summaries make it possible to visualize datasets that are orig-
inally too large to load into memory.

—Noise elimination: Real graph data are frequently large scale and considerably noisy with
many hidden, unobserved, or erroneous links and labels. Such noise hinders analysis by
increasing the workload of data processing and hiding the more “important” information.
Summarization serves to filter out noise and reveal patterns in the data.

ACM Computing Surveys, Vol. 51, No. 3, Article 62. Publication date: June 2018.

Graph Summarization Methods and Applications: A Survey 62:3

Given its advantages, graph summarization has extensive applications, including clustering
(Cilibrasi and Vitányi 2005), classification (Leeuwen van Leeuwen et al. 2006), community de-
tection (Chakrabarti et al. 2004), outlier detection (Smets and Vreeken 2011; Akoglu et al. 2012),
pattern set mining (Vreeken et al. 2011), finding sources of infection in large graphs (Prakash et al.
2012), and visualization (Dunne and Shneiderman 2013; Jin and Koutra 2017b), among others.

The problem of graph summarization has been studied algorithmically in the fields of graph
mining and data management, while interactive exploration of the data and appropriate display
layouts have been studied in visualization. In this survey, we review graph summarization mostly
from a methodological perspective, answering how we can algorithmically obtain summaries of
graph data. We also give pointers to visual analytics platforms that can consume algorithmic out-
puts and explore display options.

1.1 Challenges

Overall, the notion of a graph summary is not well defined. A summary is application dependent
and can be defined with respect to various goals: It can preserve specific structural patterns, focus
on some network entities, preserve the answers to graph queries, or maintain the distributions of
graph properties. Overall, graph summarization has five main challenges:

(1) Data volume: The main target of graph summarization is to reduce the size of the input
graph data so that other analyses can be performed efficiently. At the same time, though,
summarization techniques are themselves faced with the challenge of processing large
amounts of data. The requirement of efficiency often steers their design toward techniques
that scale well with the size of the input graph. Table 1 points to methods that are linear
on the size of the input.

(2) Complexity of data: Graph operations often cannot be easily partitioned and parallelized
because of the many interactions between entities, as well as the complexity of entities
themselves. Furthermore, the heterogeneity of nodes and edges continues to increase in
real networks (Sun and Han 2012; Koutra et al. 2017). Accordingly, incorporating side
information from heterogeneous sources (text, images, etc.) may require highly detailed
design (e.g., multi-layer networks (Kivel et al. 2014)) and quantification in algorithms. For
example, in social networks, users can chat or share with each other, follow or friend each
other, and a single user profile alone contains additional information. Finally, real datasets
often contain noise or missing information, which may interfere with the pattern mining
process. Sections 3 and 4 review methods for attributed and dynamic networks, which
tend to be more complex than methods for plain networks.

(3) Definition of interestingness: Summarization involves extracting of important or interest-
ing information. However, the definition of “interesting” is itself subjective, usually re-
quiring both domain knowledge and user preferences. Moreover, the cutoff between “in-
teresting” and “uninteresting” can be difficult to determine in a principled way; usually, it
is decided by considering the tradeoffs among time, space, and information preserved in
the summary, as well as the complexity of mapping solutions obtained from the summary
back onto the original nodes and edges. Each presented graph summarization technique
uses different optimization formulations to define the interestingness of a summary.

(4) Evaluation: Evaluation of summarization outputs depends on the application domain.
From the database perspective, a summary is good if it efficiently supports both global and
local queries with high accuracy. In the context of summarizing community information,
either community preservation is maximized or reconstruction error is minimized.
Compression-based techniques seek to minimize the number of bits needed to describe

ACM Computing Surveys, Vol. 51, No. 3, Article 62. Publication date: June 2018.

62:4 Y. Liu et al.

Table 1. Qualitative Comparison of All Graph Summarization Techniques Based
on the Properties of the Input Graph

(e.g., Weighted, (Un)directed, homogeneous/heterogeneous), their algorithmic properties (i.e., user-defined parameters,
complexity linear on the number of edges, core technique, output), and their main objectives. Notation: ∗ for the input
means that the algorithm can be extended to that type of input, but details are not in the article; for complexity ∗ indicates
sub-linearity.

the input graph or else the number of nodes/edges or the normalized number of bits
per edge. Furthermore, evaluations become more complex when more elements, such as
visualization and multi-resolution summaries, are involved. In these cases, user studies
and qualitative criteria may be employed.

(5) Change over time: Graph summaries should evolve over time, since real data are usually
dynamic (Leskovec et al. 2005). For instance, social network activity, brain functions, and
email communications—all naturally represented as graphs—change with time. How to in-
corporate the dynamic nature of such data in computation and perform analysis efficiently
becomes an essential question. Section 4 reviews methods that treat dynamic graphs as a
sequence of static snapshots or streams.

ACM Computing Surveys, Vol. 51, No. 3, Article 62. Publication date: June 2018.

Graph Summarization Methods and Applications: A Survey 62:5

Fig. 1. Overview of our survey. Taxonomy of graph summarization algorithms based on the input type and
the core employed technique; alternative approaches; applications; and open problems.

As demonstrated by these challenges, graph summarization is a difficult and multifaceted
problem.

1.2 Types of Graph Summaries

In this survey, we categorize graph summarization methods based on the type of data handled and
the core techniques employed. Below we give the main types of graph summaries, and Table 1
provides detailed information for each approach:

Input: Static or dynamic. Most summarization methods operate on static networks, leveraging
graph structure (links), and, if available, the node/edge attributes. Despite the prevalence of large
dynamic networks, only recent research efforts address their efficient summarization. In some
cases, static methods are adapted to handle dynamic networks seen as series of static snapshots.
In other cases, new methods for graph streams are devised. In this survey, we first categorize
summarization methods based on their input type (Figure 1).

Input: Homogeneous or heterogeneous. The most well-studied instance in graph summarization,
and graph mining more generally, is the homogeneous graph with one entity and one link type.
However, some approaches apply to heterogeneous graphs by treating various types of nodes (e.g.,
students, instructors) and relations between them (e.g., teacher, friends, classmates) differently.
These methods tend to be more complex but also more expressive.

Core technique. Across the literature, graph summarization methods employ a set of core
techniques:

—Grouping or aggregation based: This is the most popular technique. Some node-grouping

methods recursively aggregate nodes into “supernodes” based on an application-dependent
optimization function, which can be based on structure and/or attributes. Others employ ex-
isting clustering techniques and map each densely connected cluster to a supernode. Edge-

grouping methods aggregate edges into compressor or virtual nodes.
—Bit compression based: This approach, a common technique in data summarization, mini-

mizes the number of bits needed to describe the input graph via its summary. Some methods
are lossless and can perfectly reconstruct the original graph from the summary. Others are
lossy, compromising recovery accuracy for space savings.

ACM Computing Surveys, Vol. 51, No. 3, Article 62. Publication date: June 2018.

62:6 Y. Liu et al.

—Simplification or sparsification based: These methods streamline an input graph by removing
less “important” nodes or edges, resulting in a sparsified graph.

— Influence based: These approaches aim to discover a high-level description of the influence
propagation in large-scale graphs. Techniques in this category formulate the summarization
problem as an optimization process in which some quantity related to information influence
is maintained.

Output: Summary type. The output of a summarization approach can be (i) a supergraph, which
consists of supernodes or collections of original nodes, and superedges between them; (ii) a spar-
sified graph, which has fewer nodes and/or edges than the original network; or (iii) a list of (static
or temporal) structures or influence propagations, which are seen independently instead of in the
form of a single summary graph. Moreover, the summary can be (a) flat, with nodes simply grouped
into supernodes, or (b) hierarchical, with multiple levels of abstraction.

Output: Non-overlapping or overlapping nodes. In its simplest form, a summary is non-
overlapping: Each original node belongs only to one summary element (e.g., supernode, subgraph).
Overlapping summaries, where a node may belong to multiple elements, can capture complex in-
herent data relationships but may also complicate intepretation and visualization.

Main objective. The key objectives of graph summarization include query efficiency and approx-
imate computations, compression and data size reduction, static or temporal pattern discovery,
visualization and interactive large-scale visual analytics, influence analysis and understanding,
entity resolution, and privacy preservation.

1.3 Differences from Prior Surveys

Previous work on surveying the graph summarization literature is scarce. You et al. (2013) present
some summarization algorithms for static graphs, focusing mostly on grouping- and compression-
based methods. The tutorial by Lin et al. (2013) provides more specific categorization and descrip-
tions of ongoing work but again only addresses static graph summarization. By contrast, we review
a wide set of proposed methodologies for both static and dynamic graph summarization. Specifi-
cally, in this survey:

(1) We create a taxonomy (Figure 1) on the three main instances of the graph summarization
problem: for plain static graphs (Section 2), for static graphs with additional side informa-
tion or labels (Section 3), and for (plain) graphs that evolve over time (Section 4). Within
each instance of the problem, we present key algorithmic ideas and methodologies used
to solve it.

(2) We highlight methodological properties that are useful to researchers and practitioners,
such as input/output data types and end goal (for example, compression vs. visualization),
and present them concisely in Table 1.

(3) We give connections between methods of graph summarization and related fields that,
while not directly supporting graph summarization, have potential in summarization
tasks. These fields include compression, sparsification, and clustering and community
detection.

(4) We review real-world applications of graph summarization and identify open problems
and opportunities for future research (Sections 5 and 6).

2 STATIC GRAPH SUMMARIZATION: PLAIN NETWORKS

Most work in static graph summarization focuses solely on graph structure without side informa-
tion or labels. At a high level, the problem of summarization or aggregation or coarsening of static,

ACM Computing Surveys, Vol. 51, No. 3, Article 62. Publication date: June 2018.

Graph Summarization Methods and Applications: A Survey 62:7

plain graphs is described as

The first block of Table 1 qualitatively compares and explicitly characterizes static graph sum-
marization methods for plain networks. Here, we review these methods by organizing them into
categories based on the core methodology that they employ for the summarization task. When
applicable, we first give the high-level idea per method type and then describe the corresponding
technical details.

2.1 Grouping-Based Methods

Grouping-based methods are among the most popular techniques for summarization. We distin-
guish grouping-based graph summarization methods into two main categories: (i) node-grouping
and (ii) edge-grouping. In Section 2.2, we discuss methods that use bit-level compression as their
primary summarization technique and grouping as a complementary technique.

2.1.1 Node-Grouping Methods. Some approaches employ existing clustering techniques to find
clusters that then map to supernodes. Others recursively aggregate nodes into supernodes, con-
nected via superedges, based on an application-dependent optimization function.

Node clustering-based methods. Although node grouping and clustering are related in that they
result in collections of nodes, they have different goals. In the context of summarization, node
grouping is performed so that the resultant graph summary has specific properties, e.g., query-
specific properties or maintenance of edge weights. On the other hand, clustering or partitioning
usually targets the minimization of cross-cluster edges or a variant thereof, without the end goal
of producing a graph summary. Moreover, unlike role mining (Henderson et al. 2011, 2012; Gilpin
et al. 2013) or structural equivalence (Peleg and Schäffer 1989), which seek to identify “functions”
of nodes (e.g., bridge or spoke nodes) and find role memberships, summarization methods seek to
group nodes that have not only structural similarities but are also connected or close to each other
in the network and thus can be replaced with a supernode.

Although the goal of clustering is not graph summarization, the outputs of clustering algorithms
can be easily converted to non-application-specific summaries. In a nutshell, a small representa-
tion of the input graph can be obtained by (i) mapping all the nodes that belong to the same
cluster/community to a supernode and (ii) linking them with superedges with weight equal to the
sum of the cross-cluster edges or else the sum of the weights of the original edges (Newman and
Girvan 2004; Yang and Leskovec 2013; Low et al. 2012). Although the clustering output can be
viewed as a summary graph, a fundamental difference from tailored summarization techniques is
that the latter groups nodes that are linked to the rest of the graph in a similar way, while cluster-
ing methods simply group densely connected nodes. There exist comprehensive introductions to
clustering techniques (Leskovec et al. 2014; Aggarwal 2015) and work on clustering or community
detection methods (Aggarwal and Wang 2010), so we do not cover them in this survey. Among the
most popular partitioning methods are Graclus (Dhillon et al. 2005), spectral partitioning (Alpert
et al. 1999), and METIS (Karypis and Kumar 1999). Although METIS is a well-known partitioning
approach that finds “hard” node memberships, it constructs a series of graph “summaries” by it-
eratively finding the maximal graph matching and merging nodes that are incident to an edge of
the matching. The bisection result on the most coarsened graph is then projected backwards to

ACM Computing Surveys, Vol. 51, No. 3, Article 62. Publication date: June 2018.

62:8 Y. Liu et al.

the original graph. Via this process, it is possible to obtain a compact, hierarchical representation
of the original graph, which resembles other node-grouping summarization methods.

Node aggregation-based methods. One representative algorithm of hierarchical clustering-based
node grouping is GraSS (LeFevre and Terzi 2010), which targets accurate query handling. This
summarization method supports queries on the adjacency between two nodes, as well as the de-
gree and the eigenvector centrality of a node. The graph summaries are generated by greedily
grouping nodes such that the normalized reconstructed error, 1

|V |2
∑

i ∈V
∑

j ∈V |Ā(i, j) −A(i, j) |, is
minimized—A is the original adjacency matrix of the graph and Ā is the real-valued approximate
adjacency matrix, each entry of which intuitively represents the probability of the corresponding
edge existing in the original graph given the summary. The resulting summaries are represented
as a group of vertex sets with information about the number of edges within and between clusters.
These sets are used to generate a probabilistic approximate adjacency matrix on which incoming
queries are computed. For example, if many edges cross vertex sets A and B, then it is likely that a
node in A is connected to a node in B. In another variant, GraSS leverages Minimum Description
Length (MDL) to automatically find the optimal number of supernodes in the summary.

While GraSS does not guarantee output quality, Riondato et al. (2014) propose a method of gen-
erating supernodes and superedges with guarantees. Here, the objective is to find a supergraph
that minimizes the lp -reconstruction error, or the p-norm of A − Ā, as opposed to the normalized
reconstruction error in GraSS, given a number of supernodes k . The proposed approach, which
uses sketching, sampling, and approximate partitioning, is the first polynomial-time approxima-
tion algorithm of its kind with runtime O (|E | + |V | · k). This method targets efficiency for the
same types of queries as GraSS, as well as triangle and subgraph counting queries.

Toivonen et al. (2011) focus on compressing graphs with edge weights, proposing to merge nodes
with similar relationships to other entities (structurally equivalent nodes) such that approximation
error is minimized and compression is maximized. In merging nodes to obtain a compressed graph,
the algorithm maintains either edge weights or strengths of connections of up to a certain number
of hops. Specifically, in the simplest version of the solution, each superedge is assigned the mean
weight of all edges it represents. In the generalized version, the best path between any two nodes
is “approximately equally good” in the compressed graph and original graphs, but the paths do
not have to be the same. The definition of path “goodness” is data and application dependent. For
example, the path quality can be defined as the maximum flow through the path for a flow graph
or the probability that the path exists for a probabilistic or uncertain graph.

The methods described above all minimize some version of the approximation or reconstruc-
tion error. Other node-grouping approaches seek summaries that maintain specific properties of
the original graph, a goal that resembles the target of graph sparsification methods (Spielman and
Srivastava 2011; Hübler et al. 2008). One example is diffusive properties related to the spectrum of
the graph, and specifically its first eigenvalue λ1 (Purohit et al. 2014), which are crucial in diffusion
and propagation processes like epidemiology and viral marketing. In this case, the summarization
problem is formulated as a minimization of the change in the first eigenvalue between the ad-
jacency matrices of the summary and the original graph. For efficiency, the method repeatedly
merges pairs of adjacent nodes, and uses a closed form to evaluate the change in λ1, derived us-
ing matrix perturbation theory. Node pairs are merged in increasing order of change in λ1—the
light edges with small “edge scores” in step 1 of Figure 2 are good candidates for merging—and
the merging process stops when the user-specified number of nodes is achieved. At every step,
edges are reweighted so that λ1 is maintained (step 2 in Figure 2). The temporal extension of this
approach is discussed in Section 4.

ACM Computing Surveys, Vol. 51, No. 3, Article 62. Publication date: June 2018.

Graph Summarization Methods and Applications: A Survey 62:9

Fig. 2. Overview of coarseNet (Purohit et al. 2014). All the edges in the original graph are weighted equally.
In step 1, edges with small width result in small changes in λ1, while heavy edges result in big changes
and are not good candidates for contraction. In step 2, the edge width depicts the new edge weight after
obtaining the coarsened network.

In the visualization domain, Dunne and Shneiderman (2013) introduce motif simplification to en-
hance network visualization. Motif simplification replaces common links and common subgraphs,
like stars and cliques, with compact glyphs to help visualize and simplify the complex relationships
between entities and attributes. This approach uses exact pattern discovery algorithms to identify
patterns and subgraphs, replacing these with glyphs to result in a less cluttered network display.
We give an example in Section 5.2.

Beyond the end goal of summarization itself, node grouping can be applied to many graph-
based tasks. CoSum (Zhu et al. 2016) involves summarization on k-partite heterogeneous graphs
to improve record linkage between datasets, otherwise known as entity resolution. CoSum trans-
forms an input k-type graph into another k-type summary graph composed of supernodes and
superedges, using links between different types to improve the accuracy of entity resolution. The
algorithm jointly condenses vertices into a supernode such that each supernode consists of nodes
of the same type with high similarity and creates superedges that connect supernodes according
to the original links between their constituent nodes. The resultant summary achieves better per-
formance in entity resolution than generic approaches, especially in datasets with missing values
and one-to-many or many-to-many relations.

2.1.2 Edge-Grouping Methods. Unlike node-grouping methods that group nodes into supern-
odes, edge-grouping methods aggregate edges into compressor or virtual nodes to reduce the num-
ber of edges in a graph in either a lossless or lossy way. Note that in this section, “compression”
does not refer to bit-level optimization, as in the following section but rather to the process of
replacing a set of edges with a node.

Graph Dedensification (Maccioni and Abadi 2016) is an edge-grouping method that compresses
neighborhoods around high-degree nodes, accelerating query processing and enabling direct oper-
ations on the compressed graph. Following the assumption that high-degree nodes are surrounded
by redundant information that can be synthesized and eliminated, Maccioni and Abadi (2016) in-
troduce “compressor nodes,” which represent common connections high-degree nodes. To provide
global guarantees and reduce the scope of compressor handling during query processing, deden-
sification only occurs when every node has at most one outgoing edge to a compressor node, and
every high-degree node has incoming edges coming only from a compressor node. These guar-
antees are then used to create query processing algorithms that enable direct pattern matching
queries on the compressed graph.

Similar approaches include the “connector” motif in visualization-based summarization (Dunne
and Shneiderman 2013) discussed in Section 2.1.1 and Virtual Node Mining (VNM) (Buehrer and

ACM Computing Surveys, Vol. 51, No. 3, Article 62. Publication date: June 2018.

62:10 Y. Liu et al.

Fig. 3. Example of graph dedensification (Maccioni and Abadi 2016). Many edges are removed after the
addition of the compressor node C, which connects to the high-degree nodes H.

Chellapilla 2008), which is used as a lossy compression scheme for the Web graph to accommodate
community-related queries and other random access algorithms on link servers. Like SUBDUE
(Cook and Holder 1994) (Section 3.2), VNM uses a frequent mining approach to extract meaningful
connectivity formations by casting the outlinks/inlinks of each vertex as a transaction/itemset.
Then, for each recurring pattern, it removes the links from its vertices and generates a new vertex
(virtual node) in the graph, which is added as an outlink. The process may be viewed exactly
like graph dedensification (Figure 3), although dedensification provides exact answers due to its
losslessness and does not suffer from the space/time tradeoff of graph indexing.

2.2 Bit Compression-Based Methods

Bit compression is a common technique in data mining. In graph summarization, the goal of these
approaches is to minimize the number of bits needed to describe the input graph, where the sum-
mary consists of a model for the input graph and its unmodeled parts. The graph summary or model
is significantly smaller than the original graph and often reveals various structural patterns, like
bipartite subgraphs, that enhance understanding of the original graph structure. As mentioned in
the previous section, some of these approaches primarily use compression and secondary group-
ing techniques. However, some others aim solely to compress a given graph without necessarily
creating a graph summary or finding comprehensible graph structures.

Here we focus mostly on the former approaches, which often formulate summarization as a
model selection task. These works employ the two-part Minimum Description Length (MDL) code,
the goal of which is to minimize the description of the given graph G and the model class M in
terms of bits:

minL(G,M) = L(M) + L(G |M), (1)

which is given as the description length of the model, L(M), and the description length of the graph
given the model (i.e., the errors or unmodeled parts with respect to the model). For completeness,
we also present some graph compression methods that can be adapted to summarization, although
not originally designed for that purpose.

Relying on this two-part MDL representation, Navlakha et al. (2008) introduce an approach to
summarize graphs with bounded error. This representation, obtained by aggregating nodes in the
summary generation, consists of a graph summary S and a set of corrections C (Figure 4). The
summary is an aggregate graph in which each node corresponds to a set of nodes in G, and each
edge represents the edges between all pairs of nodes in the two sets. The correction term specifies
the list of edge-corrections that must be applied to the summary to exactly recreateG. The cost of a
representation, R, is the sum of the storage costs of both S andC: cost (R) = |ES | + |C |, where ES is

ACM Computing Surveys, Vol. 51, No. 3, Article 62. Publication date: June 2018.

Graph Summarization Methods and Applications: A Survey 62:11

Fig. 4. Two-part MDL representation (Navlakha et al. 2008). Graph summary S and corrections C . Since S
does not capture the edge (1,5) properly, it is added inC . Similarly, the summary “captures” edge (8,4), which
is missing in the original graph, so it is removed in C .

Fig. 5. VoG (Koutra et al. 2014a). Overview of vocabulary-based graph summarization.

the set of superedges in S . The MDL-based graph summary is found by aggregating groups of nodes
(thereby falling also into the grouping-based summarization category) as long as they decrease the
MDL cost of the graph. To this end, a simple but costly greedy heuristic iteratively combines node
pairs that give the maximum cost reduction into supernodes. To reduce the complexity to cubic on
the average degree of the graph, a randomized algorithm randomly picks a node and merges it with
the best node in its 2-hop neighborhood. This formulation also supports lossy compression with
bounded reconstruction error to achieve even higher space savings. This summarization approach
gives up to two times more compact summaries than graph compression (Boldi and Vigna 2004)
and clustering (Dhillon et al. 2005) methods.

Similarly to Navlakha et al. (2008), Ahnert (2013) introduces a biological application for the
discovery of dominant relationship patterns in transcription networks, such as the networks of
Saccharomyces cerevisiae and Escherichia coli. In biology, the terms “power graph” and “power
nodes/edges” are used to refer to what we call supergraphs and supernodes/edges. In this ap-
plication, most supernodes are shown to have functional meaning, and the superedges signify
large-scale functional relationships between different subsystems of transcription networks.

Addressing an information-theoretic optimization problem also based on MDL, VoG (Koutra
et al. 2014a; Koutra and Faloutsos 2017), or vocabulary-based summarization of graphs, succinctly
describes large-scale graphs with a few possibly overlapping, easily understood structures encoded
in the model M . The graph summary is given in terms of a predefined “vocabulary” of struc-
tures that goes beyond the simple rectangles that most summarization and clustering methods
find, identifying cliques and near-cliques, stars, chains, and (near-) bipartite cores. VoG is modular
(Figure 5): (i) it first performs graph clustering by adapting the node reordering method Slash-
Burn (Lim et al. 2014) to extract ego-networks and other disconnected components; (ii) it labels

ACM Computing Surveys, Vol. 51, No. 3, Article 62. Publication date: June 2018.

62:12 Y. Liu et al.

the extracted subgraphs with the appropriate structures in the assumed vocabulary (i.e., cliques
and near-cliques, stars, chains, and full or near-bipartite cores) using MDL as a model selection
criterion; and, finally, (iii) it creates a summary by employing heuristics that choose only the sub-
graphs that minimize the total encoding cost of the graph, L(G,M), as it is defined in Equation (1).
Some of the exact structures in the vocabulary are part of the motif simplification scheme (Dunne
and Shneiderman 2013) (Section 2.1.1), but VoG is distinct in that it allows for near-structures that
appear often in real-world graphs and uses MDL for summarization. Likewise, VoG and Navlakha
et al. (2008)’s MDL representation are similar in that they use MDL for summarization, but the
latter is confined to summarizing a graph in terms of non-overlapping cliques and bipartite cores,
while VoG supports a more diverse set of structures or vocabulary. Moreover, it is possible to ex-
pand the vocabulary to address the needs of specific applications or domains. Extensions of VoG
(Liu et al. 2015) have been applied to empirically evaluate the summarization power of various
graph clustering methods, such as METIS (Karypis and Kumar 1999). Similarly to VoG, Miettinen
and Vreeken (2011) and Miettinen and Vreeken (2014) discuss MDL for Boolean matrix factoriza-
tion, which can be viewed as a summary in terms of possibly overlapping full cliques in directed
graphs.

Connections to graph compression. Graph summarization and compression are related. Graph
summarization methods leverage compression to find a smaller representation of the input graph,
while discovering structural patterns. In these cases, although compression is the means, finding
the absolutely smallest representation of the graph is not the end goal. The patterns that are being
unearthed during the process may lead to suboptimal compression. However„ in graph compres-
sion works, the goal is to compress the input graph as much as possible to minimize storage space,
irrespective of patterns.

Since compression and summarization are distinct fields, we only give a few fundamental
methods in the former, including: the “Eulerian data structure” to handle neighbor queries in
social networks (Maserrat and Pei 2010) and extensions of this work to community-preserving
compression (Maserrat and Pei 2012); node reordering techniques, such as zip block encoding in
Gbase (Kang et al. 2011), bipartite minimum logarithmic arrangement (Dhulipala et al. 2016) for
inverted indices, and techniques for real graphs with power-law degree distributions (Lim et al.
2014); edge reordering techniques (Goonetilleke et al. 2017); compression of web graphs using
lexicographic localities (Boldi and Vigna 2004); extensions to social networks (Grabowski and
Bieniecki 2014; Chierichetti et al. 2009); breadth-first search-based approaches (Apostolico and
Drovandi 2009); lossy edge encoding per triangle (Feng et al. 2013); weighted graph compression
to maintain edge weights up to a certain number of hops (Toivonen et al. 2011); provably
optimal compression of Erdös-Rényi random graphs using structural entropy (SZIP) (Choi and
Szpankowski 2012); and minimal probabilistic tile cover mining (Liu and Chen 2016) that has
applications to binary matrices and bipartite graphs.

2.3 Simplification-Based Methods

Simplification-based summarization methods streamline the original graph by removing less
“important” nodes or edges, resulting in a sparsified graph. As opposed to supergraphs, here
the summary graph consists of a subset of the original nodes and/or edges. In addition to
simplification-based summarization methods, some existing graph algorithms have the potential
for simplification-based summarization, such as sparsification, sampling, and sketching.

A representative work on node simplification-based summarization techniques is OntoVis (Shen
et al. 2006), a visual analytical tool that relies on node filtering for the purpose of understanding
large, heterogeneous social networks in which nodes and links respectively represent different

ACM Computing Surveys, Vol. 51, No. 3, Article 62. Publication date: June 2018.

Graph Summarization Methods and Applications: A Survey 62:13

Fig. 6. Overview of egocentric abstraction (Li and Lin 2009). The features are ranked by frequency (score) in
step 2. Depending on the policy, only the frequent or rare features are used. In the example, the abstraction
graph is based on frequent features above a threshold θ .

concepts and relations. OntoVis uses information in the ontology that relates nodes and edges,
such as the degree of nodes of specific type, to semantically prune the network. OntoVis supports
semantic abstraction, structural abstraction, and importance filtering. In semantic abstraction, the
user constructs a derived graph from the original graph by including only nodes whose types are
selected from the original ontology graph. For example, in a terrorism network, selection of the
node type “terrorist organization” results in a semantic abstraction of different terrorist organi-
zations. Structural abstraction simplifies the graph while preserving the essential structure of the
entire network, for example, by removing one-degree nodes and duplicate paths. Importance fil-
tering makes use of statistical measures like node degree for evaluating connectivity and relevance
between node types.

Targeting the same type of graph as OntoVis, Li and Lin (2009) propose a four-step unsuper-
vised algorithm for egocentric information abstraction of heterogeneous social networks using
edge, instead of node, filtering (Figure 6). First, during the semantic modeling step, features (or else
linear combinations of relations or path-based patterns) are automatically selected and extracted
according to the surrounding network substructure (k-hop neighborhoods). Second, the statistical
dependency is measured between the features per ego node. Third, during the egocentric infor-
mation abstraction step, irrelevant information is removed by applying distilling criteria, such as
keeping the most frequent or rare features. Finally, in the fourth step, an egocentric abstracted
graph is constructed incrementally on the remaining features, allowing the user to visualize the
smaller resulting graph.

Connections to graph sampling, sparsification, and sketches. A complementary approach toward
“compressing” a graph involves sampling nodes or edges from it (Hübler et al. 2008; Batson et al.
2013). Note, though, that sampling focuses more on obtaining sparse subgraphs that can be used
to approximate properties of the original graph (degree distribution, size distribution of connected
components, diameter, or community structure (Maiya and Berger-Wolf 2010)) and less on identi-
fying patterns that collectively summarize the input graph to enhance user understanding.

Various sampling techniques have been studied (Mathioudakis et al. 2011; Ahmed et al. 2013),
and a comprehensive tutorial on graph sampling was presented at KDD (Hasan et al. 2013). Sam-
pling techniques include sampling nodes according to their in- or out-degree, PageRank, or sub-
structures, such as spanning trees; as well as sampling edges uniformly or according to their
weights or their effective resistance (Spielman and Srivastava 2011) to maintain the graph spec-
trum up to some multiplicative error or to maintain node reachability (transitive reduction (Aho
et al. 1972)). Although sampling has the potential to allow better visualization (Rafiei and Cu-
rial 2005) and approximate specific queries with theoretical guarantees, it cannot detect graph
structures, often operates on individual nodes/edges instead of collective patterns, and may need

ACM Computing Surveys, Vol. 51, No. 3, Article 62. Publication date: June 2018.

62:14 Y. Liu et al.

additional processing to make sense of the sample. Related to the goal of maintaining specific graph
properties is the k-spanner (Peleg and Schäffer 1989), which is the sparsest subgraph in which the
distance between pairs of nodes is at most k times the distance in the initial graph. A common
category of the problem is the tree k-spanner, which approximates the original graph with a tree
that satisfies the distance property. Finding a k-spanner is NP-hard except for the case of k = 2,
which can be solved in O (|E | + |V |) time.

Graph sketches (Ahn et al. 2012; Liberty 2013; Ghashami et al. 2016), or data synopses obtained
by applying linear projections, are also relevant. Graph sketching can be viewed as linear di-
mensionality reduction, where the linearity of sketches makes them applicable to the analysis
of streaming graphs with node and edge additions and deletions and distributed settings, such as
MapReduce (Dean and Ghemawat 2004).

2.4 Influence-Based Methods

Influence-based methods seek to find a compact, high-level description of the influence dynamics
in large-scale graphs to understand the patterns of influence propagation at a global level. Usually
such methods formulate graph summarization as an optimization process in which some quantity
related to information influence is maintained. These summarization methods are scarce and have
been mostly applied on social graphs, where important influence-related questions arise.

Community-level Social Influence (CSI) (Mehmood et al. 2013) is a representative work that
focuses on summarizing social networks via information propagation and social influence analysis.
Like some other graph summarization techniques, CSI relies on existing clustering approaches: It
detects a set of communities using METIS (Karypis and Kumar 1999) and then finds their reciprocal
influence by extending the popular Independent Cascade model (Kempe et al. 2003) to communities
instead of individual nodes. To balance between data fit and model complexity, CSI uses MDL
and Bayesian Information Criterion (BIC) approaches to select the number of communities for
the graph model. Unlike influence propagation approaches that find representative cascades for
information diffusion, CSI leads to a compact representation of the input network where the nodes
correspond to communities and the directed edges represent influence relationships. Note that the
output of CSI is different from grouping-based summarization techniques in which the superedges
simply represent aggregate connections between the adjacent supernodes. SPINE, an alternative to
CSI (Mathioudakis et al. 2011), sparsifies social networks to only keep the edges that “explain” the
information propagation—those that maximize the likelihood of the observed data. This problem
is shown to be NP-hard to approximate within any multiplicative factor. Inspired by the idea of
decomposing sparsification into a number of subproblems equal to the nodes in the network, SPINE
is a greedy algorithm that achieves efficiency with practically little compromise in quality. Unlike
CSI, it simply eliminates original edges and does not group nodes into communities or supernodes.

2.5 Other Types of Graph Summaries

Although not our main focus, we briefly present methods that represent a network (i) visually
with a small set of anomalous patterns, distribution plots of graph properties, or carefully selected
nodes or (ii) with latent representations.

Visualization-based systems. Various graph visualization platforms for pattern identification ex-
ist. For example, Apolo (Chau et al. 2011) routes attention by visualizing the neighborhoods of a
few user-selected seed nodes, which can be interactively explored. A follow-up anomaly detection
system, OPAvion (Akoglu* et al. 2012), mines graph features using the Hadoop-based graph min-
ing framework Pegasus (Kang et al. 2009), spots anomalies by employing OddBall (Akoglu et al.
2010) for mining distributions of egonet-related features (e.g., number of nodes vs. edges), and

ACM Computing Surveys, Vol. 51, No. 3, Article 62. Publication date: June 2018.

Graph Summarization Methods and Applications: A Survey 62:15

Fig. 7. The front-end of Perseus-Hub, with linked plots for graph properties. The annotated red points cor-
respond to anomalies found during offline pre-processing.

interactively visualizes the anomalous nodes via Apolo. Finally, the large-scale system Perseus
(Koutra et al. 2015; Jin et al. 2017) enables comprehensive graph analysis by supporting the cou-
pled summarization of graph properties (computed on Hadoop or Spark) and structures, guiding
attention to outliers, and allowing the user to interactively explore normal and anomalous node be-
haviors in distribution plots and ego-network representations (Figure 7). Other visualization-based
methods include scaled density plots to visualize scatter plots (Shneiderman 2008), random and
density sampling (Bertini and Santucci 2004) for datasets with thousands of points, and rescaled
visualization of spy, distribution, and correlation plots of massive graphs (Kang et al. 2014).

Visualization-based graph summarization is also related to visual graph analytics in that sum-
maries of graphs can support interactive visualization. However, the traditional focuses of visual
graph analytics, such as the layout of the data displayed and new visualization or user interac-
tion techniques, differ from the typical goals of graph summarization. Widely used visualization
tools, such as Gephi (Bastian et al. 2009), Cytoscape (Shannon et al. 2003), and the Javascript D3
library (Bostock et al. 2011), support interactive exploration of networks and operations such as
spatializing, filtering, and clustering. Although these platforms work well on small and medium-
sized graphs, they cannot render large-scale networks with many thousands or millions of nodes,
or else they are compromised by high latency. These tools can benefit from graph summarization
methods that result in smaller network representations or patterns thereof, which can be displayed
more easily.

Domain-specific summaries. Beyond visualization, Jin and Koutra (2017a) propose an optimiza-

tion problem for summarizing a graph in terms of representative, domain-specific graph properties.
The summaries are required to be concise, diverse, domain-specific, interpretable, and fast to com-
pute. This is the first work to target domain-specific summarization by automatically leveraging

ACM Computing Surveys, Vol. 51, No. 3, Article 62. Publication date: June 2018.

62:16 Y. Liu et al.

the knowledge encoded in multiple networks from a specific domain, like social science or neuro-
science. Although it is related to visualization-based systems that support coupled summarization
of graph properties (e.g., Perseus (Koutra et al. 2015; Jin et al. 2017), described above), this method
automates the selection of the graph properties to be included in the graph “summary” based on
the domain from which the data comes.

Latent representations. A variety of methods obtain low-dimensional representations of a net-
work in a latent space. For instance, matrix factorization methods like SVD, CUR (Drineas et al.
2006), and CMD (Sun et al. 2007) all lead to low-rank approximations of an adjacency matrix,
which can be viewed as sparsified approximate “summaries” of the original graph. Recent inter-
est in deep learning has lead to novel node representation learning techniques (e.g., Perozzi et al.
(2014), Grover and Leskovec (2016), Wang et al. (2016), Tang et al. (2015), and Ribeiro et al. (2017)),
but these methods present nodes as low-dimensional vectors instead of finding a compact graph-
ical representation of the whole network, which is the goal of summarization.

3 STATIC GRAPH SUMMARIZATION: LABELED NETWORKS

So far we have reviewed summarization methods that use the structural properties of static graphs
without additional information like node and edge attributes. However, many real graphs are an-
notated, labeled, or attributed. For example, in a social network, a typical node representing a user
is associated with information about age, gender, and location; transportation graphs may have
information about the capacity of streets (edges) and the maximum speed per street; forums like
Quora, which can be interpreted as networks of questions and answers, have comments, upvotes,
and downvotes. A general definition of graph summarization for static, labeled graphs is given as
follows:

Overall, the main challenge in summarizing labeled graphs is the efficient combination of two
different types of data: structural connections and attributes. Currently, most existing works fo-
cus on node attributes alone, although other types of side information are certainly of interest in
summarization. For instance, joint summarization of multimodal data—including graphs, text, im-
ages, and streaming data—has various applications. However, due to the challenges of multimodal
analysis, these methods are underexplored in the literature.

The second block of Table 1 provides qualitative comparisons and explicit characterizations of
static graph summarization methods for labeled graphs, which we review next by classifying them
based on their core technical methodology. The overview of this section is included in Figure 1.

3.1 Grouping-Based Methods

Grouping-based methods aggregate nodes into supernodes connected by superedges based on both
structural properties and node attributes. Grouped nodes are usually structurally close in the graph
and share similar attribute values.

As discussed with plain graphs, here attributed clustering or community detection (Zhou et al.
2009; Yang et al. 2013; Xu et al. 2012) methods do not perform summarization but could be leveraged
by summarization approaches to obtain compact representations of graphs with attributes. One
fundamental difference between summarization and clustering is that the former finds coherent

ACM Computing Surveys, Vol. 51, No. 3, Article 62. Publication date: June 2018.

Graph Summarization Methods and Applications: A Survey 62:17

Fig. 8. SNAP summary (Tian et al. 2008) of a student graph. Each student in G1 has at least one friend and
one classmate in G2. The node size reflects the number of people per group Gi .

sets of nodes with similar connectivity patterns to the rest of the graph, while clustering results
in coherent, densely connected groups of nodes.

Optimizing specifically for Web graphs, the S-Node representation (Raghavan and Garcia-
Molina 2003) is a novel two-level lossless graph compression scheme. Here a Web graph is a set of
small directed graphs consisting of supernodes and superedges, which are pointers to lower-level
graphs that encode the interconnections within a small subset of Web pages. S-Node exploits em-
pirically observed properties of Web graphs like domain locality and page similarity, some of which
can be viewed as node labels and others as additional textual information, to guide the grouping
of pages into supernodes. Using a compression technique called reference encoding for the lower-
level directed graphs, S-Node achieves high space efficiency and naturally isolates portions of Web
graphs relevant to particular queries. This representation is the first Web graph representation
scheme to combine compression with support for both complex queries and local graph navigation.

Mostly studied in the database community, grouping-based attributed graph summarization
methods tend to rely on operations related to GROUP BY. SNAP and k-SNAP are two popular
database-style approaches (Tian et al. 2008). SNAP relies on (A,R)-compatibility (attribute- and
relationship-compatibility), which guarantees that nodes in all groups are homogeneous in terms
of attributes, and are also adjacent to nodes in the same groups for all types of relationships. For
example, in Figure 8, each student in G1 has at least one friend and classmate in G2. SNAP be-
gins by creating groups of nodes that share the same attributes and then iteratively splits these
groups until the grouping is “compatible” with the relationships, eventually producing the max-
imum (A,R)-compatible grouping. The nodes of the summary graph given by SNAP correspond
to the groups, and the edges are the group relationships. k-SNAP further allows users to con-
trol the summary resolution, providing “drill-down” and “roll-up” capabilities to navigate through
summaries of different resolutions.

To facilitate interactive summarization, CANAL (Zhang et al. 2010) automates k-SNAP by cat-
egorizing numerical attribute values, exploiting domain knowledge about the node labels and
graph structure. To point users to the potentially most useful summaries, CANAL incorporates
three “interestingness” criteria: (i) Diversity, the number of strong relationships connecting groups
with different attribute values; (ii) Coverage, the fraction of nodes in the original graph that are
present in strong group relationships; (iii) Conciseness, the sum of the number of groups and
strong group relationships, where a lower sum is preferred. Overall, interestingness is given as
Diversity (S)×Cover aдe (S)

Conciseness (S) , where S is the summary graph.
Hassanlou et al. (2013) introduce another database-centered graph summarization approach

similar to SNAP, where each node group consists of nodes that have the same attribute values using
the GROUP BY operation. Unlike SNAP, though, this approach applies to probabilistic graphs or
graphs with edges that have probabilities of existence associated with them. Shoaran et al. (2013)

ACM Computing Surveys, Vol. 51, No. 3, Article 62. Publication date: June 2018.

62:18 Y. Liu et al.

extend this by aiming to protect the privacy of data in the labeled summaries generated by the
aforementioned probabilistic technique. Finally, Gehrke et al. (2003) propose a privacy framework
that extends Zero-Knowledge Privacy, improving on differential privacy by only considering a
random sampling of data with added noise for the summarization.

In the database community, Fan et al. (2012) propose a “blueprint” for lossless queries on com-
pressed attributed graphs. To achieve this, query-specific functions are introduced for compressing
the graph, rewriting the query accordingly, and interpreting the result of the rewritten query on
the compressed graph. For example, this blueprint can be implemented for queries of reachability
(i.e., can node A be reached from node B?) and pattern matching (i.e., is there a subgraph that best
satisfies a function provided by the user on path length between nodes in the subgraph?). The key
idea is to group nodes that belong to the same equivalence class; intuitively, nodes that are similar
in structure and labels are equivalent. This differs from other database-style operations that first
group nodes by labels and later analyze the structure. To handle dynamic changes in web, social,
and other networks, the authors also introduce unbounded algorithms that evaluate incremental
graph structure changes and propagate the changes to the compressed graph representation. Ren
and Wang (2015) propose a method similar to Fan et al. (2012) specifically for subgraph isomor-
phism queries, where groupings are based not only on equivalent nodes but also on edge-specific
relationships that optimize the vertex matching order.

In the case of schema-less databases—in particular, for knowledge graphs connecting entities
and concepts—Song et al. (2016) propose a lossy graph summarization framework as a collection
of d-summaries, which intuitively are supergraphs that group similar entities (i.e., with the same
attribute or label) within d hops of each other. Specifically, the entities within a d-summary ob-
serve what is called d-similarity, which preserves directed paths up to length d . Unlike frequent
subgraph mining—a building block for various graph algorithms, including summarization—which
is NP-hard, computing d-summaries is tractable. To evaluate d-summaries, the authors introduce
approximations of an NP-hard “bi-criteria” function that quantifies informativeness and diversity.
The former measure favors large summaries with high coverage of the original graph; the latter
penalizes redundancy for entities appearing in many d-summaries. Both summarizing and query-
ing knowledge graphs with d-summaries are efficient and can maintain up to 99% accuracy for
subgraph queries in real and synthetic graphs.

Beyond attribute- and relationship-coherent summaries, there exists work on creating sum-
maries from frequently occurring subgraphs in heterogeneous labeled graphs. A representative
work is dependence graph summarization, where the vertices are labeled with program operations
and the edges represent dependency relationships between them (Chen et al. 2009). The algorithm
first generates partitions created by sampling nodes of the same label, resulting in multiple groups
with consistent labels. The partitioning/summarization is followed by frequent subgraph mining
and verification (removal of false positives). These steps are performed in multiple iterations to
find a lower bound on the false-negative rate of frequent subgraph detection.

3.2 Bit Compression-Based Methods

Most compression-based summarization methods leverage MDL to guide the grouping of nodes
or the discovery of frequent structures to be replaced with virtual nodes in the summary. Here,
the employed compression and/or aggregation techniques consider both the graph structure and
node/edge attributes.

The first and most famous frequent-subgraph-based summarization scheme, SUBDUE (Cook
and Holder 1994), employs a two-part MDL representation (described in Section 2.2). Beyond the
network structure, the MDL encoding accounts for node and edge labels. Greedy beam search is
used to iteratively replace the most frequent subgraph in a labeled graph, which minimizes the

ACM Computing Surveys, Vol. 51, No. 3, Article 62. Publication date: June 2018.

Graph Summarization Methods and Applications: A Survey 62:19

MDL cost, with a meta-node. Multiple passes of SUBDUE eventually produce a hierarchical de-
scription of the structural regularities in the graph. The resulting representation can be used to
either identify anomalous structures (instances that do not compress well) or the most common
substructures (substructures that have very low compression cost). Since the introduction of SUB-
DUE, many methods have been proposed to alleviate the complexity issues of frequent pattern
mining on graphs or to extend its application in different settings: Maruhashi et al. (2011) pro-
pose MultiAspectForensics, a tool to detect and visualize graph patterns; Thomas et al. (2010) intro-
duce MARGIN, an algorithm that reduces the search space of frequent subgraphs by only mining
the maximal frequent subgraphs of a graph database; and Wackersreuther et al. (2010) propose
a frequent subgraph mining algorithm to operate on dynamic graphs. Similarly to SUBDUE, a
grammar-based compression scheme (Maneth and Peternek 2016) recursively replaces frequent
“substructures” in directed edge-labeled hypergraphs, like RDF graphs. Rather than frequent sub-
graphs, these substructures are digrams, or pairs of connected hyperedges: For example, the digram
“ab” consists of the edge labels “a” and “b.” The process of recursive replacement of digrams stops
when no digram occurs more than once. Unlike most compression-based works that use MDL, this
approach leverages variable-length δ -codes (Elias 2006) for the connectivity and edge labels.

A simpler information-theoretic approach that does not use frequent subgraph mining directly
minimizes the two-part MDL representation of an input network (Wu et al. 2014). The model cost
consists of the number of bits to describe three parts: the number of node and attribute groups, the
nodes in each group, and the links among groups. The data cost includes the description cost of
the links inside each group and the attributes. The greedy summary-generating algorithm employs
the MDL cost function to determine whether a certain node grouping is beneficial to the summary
as a whole (i.e., it reduces the total encoding cost of the graph). A faster version of the greedy
algorithm initializes the summaries using label propagation instead of random initialization.

Beyond its stand-alone utility, MDL can be easily combined with other techniques, such as
locality-sensitive hashing (LSH) (Andoni and Indyk 2008), to help with in-memory processing and
summary generation. LSH is a popular technique for efficient similarity search (here, nodes in the
graph setting). In the context of summarization, it can operate on the structure and labels of each
node to efficiently find similar nodes that can be aggregated into a “coherent” group. Khan et al.
(2014) propose to LSH-based graph summarization by iteratively computing minhash functions on
node neighborhoods, combining these minhash functions into groups, computing hash codes on
the groups, and then aggregating the nodes that have the same hash codes. To handle the labels in
the graph, adjacency and attribute lists are concatenated together before hashing. Supernodes are
used to combine nodes, and, unlike other works, virtual nodes are used to combine edges between
groups of nodes. Here, MDL is used to measure the relative increases in compression efficiency
achieved by grouping nodes to supernodes and edges to superedges.

We further note that MDL is used frequently for data that, while not explicitly modeled as a
graph, can be implicitly viewed as such: R-KRIMP and RDB-KRIMP (Koopman and Siebes 2008,
2009) summarize multi-relational data, which can be viewed as attributed graphs. The former, R-
KRIMP, finds characteristic patterns in single data tables, then finds a small set of multi-relational
characteristic item sets within this reduced search space. The latter extends R-KRIMP by finding
more expressive patterns.

3.3 Influence-Based Methods

Influence-based summarization methods for labeled graphs are currently scarce. The representa-
tive method in this category leverages both structural and node attribute similarities to summarize
the influence or diffusion process in a large-scale network.

ACM Computing Surveys, Vol. 51, No. 3, Article 62. Publication date: June 2018.

62:20 Y. Liu et al.

The sole work in this category, VEGAS (Shi et al. 2015), summarizes influence propagation in
citation networks via a matrix decomposition-based algorithm. The summarization problem aims
to find the community membership matrix H of the nodes (articles in the citation network) such

that minH ≥0 | |MG − HHT | |2
F

, where MG = AAT +AT A
2 is the node similarity matrix and A is the ad-

jacency matrix. In the case of labeled networks, MG is replaced with the generalized similarity

matrix MD =
(A
⊙

AD)(A
⊙

AD)T +(A
⊙

AD)T (A
⊙

AD)
2 to incorporate side information. Here,

⊙
in-

dicates the Hadamard or element-wise product of matrices, and AD , which may be specified by
the user, encodes pairwise attribute similarity between nodes. In more detail, first the maximal
influence graphG is computed from the input influence graph I by a rooted graph search that fol-
lows the standard BFS/DFS implementation from source node f . Then the matrices MG , AD , and
MD are generated. Finally, non-negative matrix factorization is used to solve the above optimiza-
tion, yielding the community membership matrix H . Nodes are assigned to clusters according to
the maximum value in each row of H . Summaries are generated after link pruning, which is per-
formed to select the l best flows (links) for the final summary, dropping all other links.

4 DYNAMIC GRAPH SUMMARIZATION: PLAIN NETWORKS

Analyzing large and complex data is challenging by itself, so adding the dimension of time makes
the analysis even more challenging and time-consuming. Despite this, most networks realistically
do change over time: for example, communication patterns with others via phone or social net-
works; the connection between servers in a network; the flow of information, news and rumors;
the distance between connected vehicles; the information transmitted between devices in a smart
home environment.

For this reason, the temporal graph mining literature is rich, mostly focusing on: laws and pat-
terns of graph evolution in Leskovec and Faloutsos (2007), Ferlez et al. (2008), Leskovec et al. (2008),
Leskovec et al. (2005), Sun et al. (2008) and a comprehensive survey by Aggarwal and Subbian
(2014); anomaly and change detection in streaming graphs (Aggarwal and Philip 2005) or time-
evolving networks (Ferlez et al. 2008; Koutra et al. 2013, 2015) ; discovery of dense temporal cliques
and bipartite cores using PARAFAC tensor decomposition and MDL (Sun et al. 2007; Araujo et al.
2014; Koutra et al. 2012); mining of cross-graph quasi-cliques (Pei et al. 2005); clustering using in-
cremental static clustering (Xu et al. 2011) or a probabilistic approach based on mixed-membership
blockmodels (Fu et al. 2009); sampling of streaming graphs (Ahmed et al. 2013) and role discovery
(Henderson et al. 2012; Rossi et al. 2012).

In this section, we focus on methods that summarize time-evolving networks (third block in
Table 1). Summarization techniques for time-evolving networks have not been studied to the same
extent as those for static networks, possibly because of the new challenges introduced by the
dimension of time. The methods are sensitive to the choice of time granularity, which is often
chosen arbitrarily: depending on the application, granularity can be set to minutes, hours, days,
weeks, months, years, or some other unit that makes sense in a given setting. The continuous and
sometimes irregular change of real-world graphs also complicates evolution tracking, defining
online “interestingness” measures, and visualization. The dynamic graph summarization problem
may be defined as:

ACM Computing Surveys, Vol. 51, No. 3, Article 62. Publication date: June 2018.

Graph Summarization Methods and Applications: A Survey 62:21

Fig. 9. Aggregated graph example (time t1+t2).

The summary is a time-evolving supergraph with supernodes and superedges or else a sequence
of sparsified graphs with fewer nodes/edges than the input dynamic graph.

The simplest approach treats a time-evolving graph as a series of static graph snapshots, which
allows the application of static graph summarization techniques on each snapshot. However, the
effectiveness of this approach depends heavily on user-specified aggregation operations and the
time granularity (Soundarajan et al. 2016), and there is no globally established method for picking
the “right” time unit. With small time granularity, the amount of data increases significantly. With
large time granularity, interesting dynamics may be missed. Moreover, real-world processes can
be unpredictable or bursty. Adjusting the time unit of analysis may be the key to understanding
and capturing the important dynamics.

An alternative is to create an aggregate graph that summarizes the input dynamic network based
on the recency and frequency of interactions (Figure 9). This has been called an “approximation
graph” (Cortes et al. 2001; Hill et al. 2006; Sharan and Neville 2008). Specifically, the interactions
between nodes in an approximation graph are aggregated over time and weighted by applying
kernel smoothing (e.g., exponential, inverse linear, linear, uniform), where more recent edges are
weighted higher than old edges. Edges with weight below a specified threshold can also be pruned
to simplify the graph approximation. The approximation graph has been shown to be useful for
telecommunications fraud detection (Cortes et al. 2001), anomaly detection and prediction of user
behavior in web logs and email networks (Hill et al. 2006), and attribute classification via relational
classifier models (Sharan and Neville 2008).

The approximation graph can be used as input to any of the static graph summarization algo-
rithms presented in Section 2. However, this approach has the same shortcoming as the straight-
forward approach—namely, it depends on the time granularity of the input graph sequence. Prob-
abilistic relational models (PRM) and relational Markov decision processes (RMDP, which are a
sequence of PRMs forming a chain that follows a first-order Markov assumption) have also been
used to model dynamic graphs (Guestrin et al. 2003), but they cannot model time-varying edges
and treat them as fixed over time.

4.1 Grouping-Based Methods

Grouping-based summarization approaches recursively aggregate nodes and timesteps to reduce
the size of large-scale dynamic networks.

NetCondense (Adhikari et al. 2017) is a node-grouping approach that maintains specific prop-
erties of the original time-varying graph, like diffusive properties important in marketing and
influence dynamics, governed by its maximum eigenvalue. In this context, given a dynamic net-
work ofT snapshots and an epidemiology model, the goal is to find a reduced network series with
few groups of nodes (supernodes) and groups of timesteps so that the change in its maximum
eigenvalue is minimized. In its general form, this problem is intractable, but it can be transformed

ACM Computing Surveys, Vol. 51, No. 3, Article 62. Publication date: June 2018.

62:22 Y. Liu et al.

Fig. 10. Examples of temporal patterns identified by TimeCrunch (Shah et al. 2015). Ranged full clique at
times t2 through t4 and periodic bipartite core every other timestep.

into an equivalent static-graph problem with a well-conditioned, flattened network whose eigen-
value is easy to compute and has similar diffusive properties as the original dynamic network.
This observation allows solving the dynamic problem with an algorithm similar to coarseNet
(Purohit et al. 2014) (Section 2). In this case, after flattening the dynamic network, NetCon-
dense repeatedly merges adjacent node pairs and adjacent time pairs, evaluating the change in
the flattened network’s maximum eigenvalue. The changes are sorted in increasing order and the
best node-/time-pairs are merged until the user-specified network size is achieved. NetCondense
uses transformations and approximations to achieve sub-quadratic running time and linear space
complexity.

In many applications such as network monitoring and urban planning, network edges
are observed sequentially. Traditional sketching techniques (Zhao et al. 2011; Cormode and
Muthukrishnan 2005a) usually maintain only frequency counts, “dropping” the information of the
graphical structure, although the goal in summarization is to both construct a summarized graph

in linear time and to support edge updates in constant time. To this end, TCM (Tang et al. 2016)
approximates a variety of graph queries by creating and querying d graph sketches and return-
ing the minimum answer. Each graph sketch i is created by mapping the original nodes to “node
buckets” or supernodes via a hash function hi . The edges between supernodes in the graph sketch
are superedges corresponding to the sum of the connections between their constituent nodes. The
more pairwise independent hash functions (sketches) are used, the lower the probability of hash
collisions and thus the more precise are the answers to the queries. By maintaining the graphical
structure, TCM supports complex analytics over graph streams, such as conditional node queries,
aggregated edge weights, aggregated node flows, reachability path queries, aggregate subgraph
queries, and triangles.

4.2 Bit Compression-Based Methods

The techniques in this category use compression as a means of extracting meaningful patterns
from temporal data. This category’s only representative is TimeCrunch (Shah et al. 2015), which
succinctly describes a large dynamic graph with a set of important temporal structures. Extending
VoG (Koutra et al. 2014b) (Section 2.2), the authors formalize temporal graph summarization as an
information-theoretic optimization problem where the goal is to identify the temporal behaviors
of local static structures that collectively minimize the global description length of the dynamic
graph. A lexicon that describes various types of temporal behavior (flickering, periodic, one-shot)
is introduced to augment the vocabulary of static graphs (stars, cliques, bipartite cores, chains).
Figure 10 illustrates examples of patterns identified by TimeCrunch.

TimeCrunch (i) first identifies static structures in each timestamp, (ii) labels them using the
static lexicon, (iii) stitches them together to find temporal structures, (iv) then labels those using
the temporal lexicon, and (v) selects for the summary the temporal structures that help minimize

ACM Computing Surveys, Vol. 51, No. 3, Article 62. Publication date: June 2018.

Graph Summarization Methods and Applications: A Survey 62:23

the MDL cost of describing the time-evolving graph. Stitching static structures corresponds to evo-
lution tracking, which is handled via iterative rank-1 singular value decomposition (SVD) to find
potentially temporally coherent structures. Then, cosine similarity ensures the temporal coherence
of the discovered structures. Following up on this work, the EcoViz system (Jin and Koutra 2017b;
Shah et al. 2017) leverages TimeCrunch to interactively visualize and compare time-evolving sum-
maries of functional human connectomes (i.e., fMRI-based brain networks).

4.3 Influence-Based Methods

Influence and diffusion processes are inherently time evolving. The methods in this category sum-
marize the influence process mainly in dynamic social networks. In Section 2.4 we present two
techniques, CSI (Mehmood et al. 2013) and SPINE (Mathioudakis et al. 2011), that summarize social
graphs by leveraging information propagation and social influence processes. These approaches
have a temporal aspect, since they are summarizing inherently temporal activities in networks,
but they operate on static graphs, where the directed edges capture influence.

Here we focus on a method that summarizes interestingness-driven diffusion processes in dy-
namic graphs. The input of OSNet (Qu et al. 2014) is a stream of time-ordered interactions, repre-
sented as undirected edges between labeled nodes. Its goal is to capture cascades (for example, the
spread of news) in a directed graph that reveals the flow of dynamics. The output summary con-
sists of subgraphs with “interesting” nodes from the original input graph, where interestingness
is defined as a linear combination of the out-degree of a node (the number of nodes that it infects
during the diffusion process), and the maximum “propagation radius” (the length of the path from
the root of the diffusion process to the node). The core technical ideas of OSNet are (i) to construct
spreading trees and (ii) to compute the interestingness of a summary via its entropy and a thresh-
old that can lead to fast convergence. OSNet outperforms static-based summarization techniques
(Toivonen et al. 2011; Navlakha et al. 2008) that give a summary per timestamp, since they are not
suited for capturing temporal dynamics; the former depends on user-defined parameters, and the
latter gives summaries with many disconnected cliques.

Relatedly, Lin et al. (2008) focus on understanding a social group’s collective activity over time.
To this end, the authors extract activity themes over time using non-negative matrix factorization
on a multi-graph (user-photo, user-comment, photo-tag, and comment-tag graphs) to obtain latent
spaces for users and concepts. The top k users and terms in the latent space define the “important”
actions, which correspond to activity themes. Evolution of themes over time is tracked by applying
cosine similarity between their corresponding latent spaces, similarly to the evolution tracking
component of TimeCrunch (Shah et al. 2015), which also uses cosine similarity to ensure temporal
coherence. Lin et al. (2008) visualize the themes as bubbles connected by edges, each of which has
a length inversely proportional to the similarity of the themes.

Connections to graph clustering, sparsification, and compression. As with static graphs, techniques
such as clustering, sparsification, and compression are related to summarization methods for dy-
namic graphs. Some clustering methods extend heuristics that have been used for static graphs,
such as modularity (Görke et al. 2010) or minimum-cut trees (Saha and Mitra 2007), and others in-
troduce definitions specific to the temporal domain (Tantipathananandh and Berger-Wolf 2011). As
discussed in Section 2, graph sketches (Ahn et al. 2012; Liberty 2013) summarize large amounts of
data by applying linear projections. The property of linearity is fundamental, as it makes sketches
applicable to the analysis of streaming graphs in centralized or even distributed settings, where
they are partitioned in multiple servers with MapReduce (Dean and Ghemawat 2004). One-pass
and other efficient streaming algorithms with their theoretical analysis are given in Ahn et al.
(2012).

ACM Computing Surveys, Vol. 51, No. 3, Article 62. Publication date: June 2018.

62:24 Y. Liu et al.

Table 2. Qualitative Comparison of Summarization Approaches for Query Handling

Work on compressing dynamic graphs for storage includes lossy compression of time-evolving
graphs (Henecka and Roughan 2015), and encoding of dynamic, weighted graphs as three-
dimensional arrays (tensor) by reducing heterogeneity and guaranteeing compression error within
bounds (Liu et al. 2012). The latter is based on hierarchical clusters of edge weights and graph com-
pression using run-length encoding, traversing first the tensor’s time dimension and second the
tensor’s vertex dimensions. This method maintains the connectivity of the graph as defined by
the average shortest paths over all pairs of connected nodes. Thus, it handles related queries with
good approximations.

5 GRAPH SUMMARIZATION IN REAL-WORLD APPLICATIONS

As we mention in Section 1, summarization helps mitigate information overload. In this section, we
discuss real-world applications of graph summarization, which are myriad and relevant in many
domains.

5.1 Summarization for Query Handling and Efficiency

Graph summarization can greatly improve query execution and efficiency across different graph-
specific queries. Such queries may seek node-related information like degree, PageRank, or par-
ticipating triangles, or look to identify or match subgraphs within a larger graph. Table 2 outlines
several types of queries used to evaluate graph summarization methods.

Pattern-matching queries are extremely common on graph databases. For example, across star
queries involving nodes of different degrees, graph dedensification (Maccioni and Abadi 2016) im-
proves query efficiency as the size of the queried graph increases, yielding the best improvements
(up to 10× speedup) for queries involving only high-degree nodes (Section 2). Fan et al. (2012)
propose an attributed graph compression method and query transformation scheme for lossless
pattern matching queries, achieving a compression rate up to 92% and runtime reduction up to
70% (Section 3). From a systems point of view, Čebirić et al. (2015) propose query-oriented graph
summarization on Resource Description Framework (RDF) graphs, which are the standard model
for W3C web resources. Many methods for pattern matching queries also exist outside graph sum-
marization in databases and graph analytics (Tong et al. 2007; Tian and Patel 2008; Fan et al. 2013;
Pienta et al. 2014), but these are beyond our survey’s scope.

Summarization has been shown to improve query efficiency in diverse domains. For example, a
typical query on a social network graph might ask whether an edge exists between two nodes, or
more generally whether there exists a path between two nodes. Such a query can be answered on

ACM Computing Surveys, Vol. 51, No. 3, Article 62. Publication date: June 2018.

Graph Summarization Methods and Applications: A Survey 62:25

Fig. 11. Example of simplified network with one clique motif glyph and one star motif glyph (Dunne and
Shneiderman 2013).

a space-efficient summary of an expected adjacency matrix (Riondato et al. 2014). This approach
constructs the graph summary up to 12,500× faster than its baseline GraSS (LeFevre and Terzi 2010)
and also achieves lower average query error. Another application is on Web graphs (Raghavan and
Garcia-Molina 2003): here, the S-Node representation (Section 3) outperforms other representation
schemes by an order of magnitude on complex web navigation queries by loading only a relatively
small number of intranode and superedge graphs and avoiding disk I/Os when possible, leading
to 75–90% reduction in navigation time compared to baselines. A final application is knowledge
graphs (Song et al. 2016), which lead to up to 40× speedup over an optimized frequent subgraph
mining algorithm on generated knowledge graphs for a variety of subgraph queries.

5.2 Summarization for Visualization and Pattern Discovery

Summarization can enable visualization of data too large to load, display, and interactively explore
in original raw format. For example, Shen et al. (2006) apply OntoVis (Section 2.3) on a large het-
erogeneous movie network consisting of eight node types (person, movie, role, etc.) with 35,000
nodes and 108,000 links: Though relatively small, this graph is still too dense to fit on a desktop
screen. To investigate the relationships between persons and roles, the authors visually observe
the summarized network and identify a role-actor relationship where a good actor should be able
to play different roles (for example, actors like Woody Allen and Sandra Bullock play three differ-
ent types of roles). Other works that perform visualization on top of summarization include VoG
(Koutra et al. 2014a; Jin and Koutra 2017b; Shah et al. 2017), which visualizes structures of spe-
cific types (e.g., cliques, bipartite cores), and Motif Simplification (Dunne and Shneiderman 2013),
which visualizes simplified networks of up to 8,000 nodes with glyphs, a toy example of which is
given in Figure 11.

Summarization also supports pattern discovery by maintaining “interesting” or “salient” pat-
terns. Consider the Wikipedia-Controversy dataset, in which nodes are Wikipedia contributors
and edges connect users who edit the same part of the article. Koutra et al. (2014a) apply VoG
on this graph to extract the 10 most informative structures, obtaining 8 stars and 2 bipartite sub-
graphs. The centers of the stars correspond to admins or heavily active contributors. The bipartite
cores correspond to edit wars between groups of users, like vandals and responsible editors, on a
controversial topic.

SUBDUE (Cook and Holder 1994), one of the most famous frequent-pattern mining methods, is
applied in areas as diverse as chemical compound analysis, scene analysis, and CAD circuit de-
sign analysis. For example, SUBDUE discovers substructures in chemical compound graphs where
atoms are vertices and edges are bonds, in particular discovering the building-block components
that are heavily used, such as isoprene units for rubber compounds.

ACM Computing Surveys, Vol. 51, No. 3, Article 62. Publication date: June 2018.

62:26 Y. Liu et al.

5.3 Summarization for Influence Extraction

Influence analysis is a long-standing research focus and objective of graph mining. In graph
summarization, Li and Lin (2009) use egocentric abstraction to extract influence from a simulated
heterogeneous crime dataset with nodes as gangs and edges as gang relations. In a user study,
they demonstrate that the graph abstraction leads to more accurate, efficient, and confident
identification of high-level crime-committing gangs. Furthermore, it is demonstrated that each
abstraction view captures different parts of key criminal evidence to some extent: for example,
“the gang has hired a middleman intending to commit a crime.”

Another example is coarseNet (Purohit et al. 2014): Applied on cascade network Flixster of
56,000 nodes and 560,000 edges, it is demonstrated that a large fraction of movies propagate in a
small number of groups with a multi-modal distribution, suggesting movies have multiple scales
of spread. Finally, Mehmood et al. (2013) use community-level social influence analysis on Yahoo!
and Twitter graphs to observe almost no correlation between influence and link probabilities. In
other words, it is demonstrated that influence relationships do not in general exhibit any clear
structure. Even dense communities do not necessarily exhibit strong internal influence.

6 CONCLUSION

In this survey, we present the state-of-the-art in graph summarization. Distinguishing between
types of input graph and core summarization techniques, we propose a taxonomy to categorize
existing graph summarization algorithms. We introduce the key details of each algorithm and
explore relations between relevant works and methods, also providing examples of real-life ap-
plications for each algorithm category. Here, we point readers to important open problems in the
field.

6.1 Open Research Problems

While graph summarization research is advancing, the field is still relatively new and underex-
plored. First, further work is to be done in handling diverse input data types. There does not yet
exist work on summarizing temporal graphs with side information, even though many real-world
networks, like social networks, can easily (and perhaps most accurately) be modeled as temporal
attributed graphs. Even beyond the temporal aspect, other static graph types have yet to be ad-
dressed. An example is the multi-layer graph, which is an important model for Web graphs (Laura
et al. 2002); another is the multiview graph, which can be “viewed” from its different edge types. For
instance, a Twitter graph could comprise separate adjacency matrices for follows, retweets, and
messages. As data become increasingly richer, methods will need to handle graphs that comprise
multiple views or incorporate other types of data, like time series associated with network nodes.

Another area of improvement is standardizing, generalizing, or extending algorithmic and eval-
uation techniques. For example, numerous methods tailored toward query efficiency on graph
summaries exist, but they either perform approximate queries or are limited to very specific exact
queries. Further work should address lossless compression with general-purpose queries. Another
example is labeled graphs: Existing methods group nodes with cohesive attribute values, but in
some applications heterogeneous clusters are crucial. For example, such clusters could facilitate
anomaly detection or else refer to groups with desired diversity, as in an academic or profes-
sional setting. In terms of evaluation, current measures are also usually highly application spe-
cific. Compression-based methods are evaluated on compression quality; query-oriented methods
are evaluated on query latency; and so on. Some common evaluation metrics can make compari-
son of new and established approaches easier: For example, metrics that evaluate supergraphs on
sparsity, least information loss, and ease of visualization.

ACM Computing Surveys, Vol. 51, No. 3, Article 62. Publication date: June 2018.

Graph Summarization Methods and Applications: A Survey 62:27

Finally, a promising new direction is graph summarization using deep node representations
learned automatically from the context encoded in the graph. Node representation learning has
attracted significant interest in recent years (Perozzi et al. 2014; Grover and Leskovec 2016; Wang
et al. 2016; Tang et al. 2015; Ribeiro et al. 2017; Heimann et al. 2018). Given the existence of sum-
marization methods using latent node representations (e.g., via factorization) or manually selected
node/egonet/k-hop neighborhood features, as well as the recent successes of deep learning, deep
node representations for summarization naturally seem promising.

Overall, summarization methods are becoming increasingly important and useful as the volume
of available interconnected data rapidly grows. While we overview several formulations of graph
summarization already studied, we conclude by noting that many promising directions in the field
remain unexplored and thus full of potential for impact.

REFERENCES

Bijaya Adhikari, Yao Zhang, Aditya Bharadwaj, and B. Aditya Prakash. 2017. Condensing temporal networks using prop-
agation. In Proceedings of the 2017 SIAM International Conference on Data Mining. 417–425.

Charu Aggarwal and Karthik Subbian. 2014. Evolutionary network analysis: A survey. ACM Comput. Surv. 47, 1 (2014),
10:1–10:36.

Charu C. Aggarwal. 2015. Data Mining: The Textbook. Springer.
Charu C. Aggarwal and S. Yu Philip. 2005. Online analysis of community evolution in data streams. In Proceedings of the

SIAM international Conference on Data Mining (SDM’05).
Charu C. Aggarwal and Haixun Wang. 2010. A survey of clustering algorithms for graph data. In Managing and Mining

Graph Data. Springer, 275–301.
Amr Ahmed, Nino Shervashidze, Shravan Narayanamurthy, Vanja Josifovski, and Alexander J. Smola. 2013. Distributed

large-scale natural graph factorization. In Proceedings of the 22nd International Conference on World Wide Web

(WWW’13). 37–48.
Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. 2012. Graph sketches: Sparsification, spanners, and subgraphs. In

Proceedings of the 31st ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. 5–14.
Sebastian E. Ahnert. 2013. Power graph compression reveals dominant relationships in genetic transcription networks.

Molec. BioSyst. 9, 11 (2013), 2681–2685.
Alfred V. Aho, M. R. Garey, and Jeffrey D. Ullman. 1972. The transitive reduction of a directed graph. Siam J. Comput. 1, 2

(1972), 131–137.
Leman Akoglu, Duen Horng Chau, U. Kang, Danai Koutra, and Christos Faloutsos. 2012. OPAvion: Mining and visualization

in large graphs. In Proceedings of the 2012 SIGMOD Conference. ACM, 717–720.
Leman Akoglu, Mary McGlohon, and Christos Faloutsos. 2010. OddBall: Spotting anomalies in weighted graphs. In Pro-

ceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD’10).
Leman Akoglu, Hanghang Tong, Jilles Vreeken, and Christos Faloutsos. 2012. Fast and reliable anomaly detection in cate-

gorical data. In Proceedings of the ACM International Conference on Information and Knowledge Management (CIKM’12).
ACM.

Charles J. Alpert, Andrew B. Kahng, and So-Zen Yao. 1999. Spectral partitioning with multiple eigenvectors. Discr. Appl.

Math. 90, 1 (1999), 3–26.
Alexandr Andoni and Piotr Indyk. 2008. Near-optimal hashing algorithms for approximate nearest neighbor in high di-

mensions. Commun. ACM 51, (2008), 117–122.
Alberto Apostolico and Guido Drovandi. 2009. Graph compression by BFS. Algorithms 2, 3 (2009), 1031–1044.
Miguel Araujo, Spiros Papadimitriou, Stephan Günnemann, Christos Faloutsos, Prithwish Basu, Ananthram Swami,

Evangelos E. Papalexakis, and Danai Koutra. 2014. Com2: Fast automatic discovery of temporal (“comet”) communities.
In Advances in Knowledge Discovery and Data Mining. Lecture Notes in Computer Science, Vol. 8444. Springer, 271–283.

Lars Backstrom, Dan Huttenlocher, Jon Kleinberg, and Xiangyang Lan. 2006. Group formation in large social networks:
Membership, growth, and evolution. In Proceedings of the 12th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining (KDD’06). ACM, 44–54.
Mathieu Bastian, Sebastien Heymann, and Mathieu Jacomy. 2009. Gephi: An open source software for exploring and ma-

nipulating networks. In Proceedings of the International AAAI Conference on Weblogs and Social Media.
Joshua D. Batson, Daniel A. Spielman, Nikhil Srivastava, and Shang-Hua Teng. 2013. Spectral sparsification of graphs:

Theory and algorithms. Commun. ACM 56, 8 (2013), 87–94. DOI:http://dx.doi.org/10.1145/2492007.2492029
Enrico Bertini and Giuseppe Santucci. 2004. By chance is not enough: Preserving relative density through non uniform

sampling. In Proceedings of the Information Visualisation Conference.

ACM Computing Surveys, Vol. 51, No. 3, Article 62. Publication date: June 2018.

http://dx.doi.org/10.1145/2492007.2492029

62:28 Y. Liu et al.

Paolo Boldi and Sebastiano Vigna. 2004. The webgraph framework I: Compression techniques. In Proceedings of the Inter-

national World Wide Web Conference. 595–602.
Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. 2011. D3 data-driven documents. IEEE Trans. Vis. Comput. Graph.

17, 12 (2011), 2301–2309. DOI:http://dx.doi.org/10.1109/TVCG.2011.185
Ivan Brugere, Brian Gallagher, and Tanya Y. Berger-Wolf. 2016. Network structure inference, a survey: Motivations, meth-

ods, and applications. ACM Comput. Surv. 51, 2, Article 24. http://arxiv.org/abs/1610.00782.
Gregory Buehrer and Kumar Chellapilla. 2008. A scalable pattern mining approach to web graph compression with com-

munities. In Proceedings of the 2008 International Conference on Web Search and Data Mining. ACM, 95–106.
Gemma Casas-Garriga. 2005. Summarizing sequential data with closed partial orders. In Proceedings of the SIAM Interna-

tional Conference on Data Mining (SDM’05). 380–391.
Šelja Čebirić, François Goasdoué, and Ioana Manolescu. 2015. Query-oriented summarization of RDF graphs. Proc. VLDB

Endow. 8, 12 (2015), 2012–2015.
Deepayan Chakrabarti, Spiros Papadimitriou, Dharmendra S. Modha, and Christos Faloutsos. 2004. Fully automatic cross-

associations. In Proceedings of the ACM Conference on Knowledge Discovery and Data Mining (KDD’04). 79–88.
Varun Chandola and Vipin Kumar. 2005. Summarization – Compressing data into an informative representation. In Pro-

ceedings of the 2016 IEEE 16th International Conference on Data Mining (ICDM’05). 98–105.
Duen Horng Chau, Aniket Kittur, Jason I. Hong, and Christos Faloutsos. 2011. Apolo: Making sense of large network data

by combining rich user interaction and machine learning. In Proceedings of the ACM Conference on Knowledge Discovery

and Data Mining (KDD’11).
Chen Chen, Cindy X. Lin, Matt Fredrikson, Mihai Christodorescu, Xifeng Yan, and Jiawei Han. 2009. Mining graph patterns

efficiently via randomized summaries. Proc. VLDB Endow. 2, 1 (2009), 742–753.
Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, Michael Mitzenmacher, Alessandro Panconesi, and Prabhakar Raghavan.

2009. On compressing social networks. In Proceedings of the ACM Conference on Knowledge Discovery and Data Mining

(KDD’09). 219–228.
Yongwook Choi and Wojciech Szpankowski. 2012. Compression of graphical structures: Fundamental limits, algorithms,

and experiments. IEEE Trans. Inf. Theory 58, 2 (2012), 620–638.
Rudi Cilibrasi and Paul Vitányi. 2005. Clustering by compression. IEEE Trans. Inf. Theory 51, 4 (2005), 1523–1545.
Diane J. Cook and Lawrence B. Holder. 1994. Substructure discovery using minimum description length and background

knowledge. J. Artif. Intell. Res. 1 (1994), 231–255.
Graham Cormode and S. Muthukrishnan. 2005a. An improved data stream summary: The count-min sketch and its appli-

cations. J. Algor. 55, 1 (2005), 58–75.
Graham Cormode and S. Muthukrishnan. 2005b. Summarizing and mining skewed data streams. In Proceedings of the SIAM

international Conference on Data Mining (SDM’05).
Corinna Cortes, Daryl Pregibon, and Chris Volinsky. 2001. Communities of interest. In Proceedings of the 4th International

Conference on Advances in Intelligent Data Analysis. 105–114.
Uros Damnjanovic, Virginia Fernandez Arguedas, Ebroul Izquierdo, and José M. Martínez. 2008. Event detection and clus-

tering for surveillance video summarization. In Proceedingsof the 9th International Workshop on Image Analysis for Mul-

timedia Interactive Services (WIAMIS’08). IEEE, 63–66.
Pedro O. S. Vaz de Melo, Leman Akoglu, Christos Faloutsos, and Antonio Alfredo Ferreira Loureiro. 2010. Surprising pat-

terns for the call duration distribution of mobile phone users. In Proceedings of the European Conference on Machine

Learning and Principles and Practice of Knowledge Discovery in Databases (ECML/PKDD’10). 354–369.
Jeffrey Dean and Sanjay Ghemawat. 2004. MapReduce: Simplified data processing on large clusters. In Proceedings of the

6th Symposium on Operating Systems Design and Implementation (OSDI’04). 10.
Pravallika Devineni, Danai Koutra, Michalis Faloutsos, and Christos Faloutsos. 2015. If walls could talk: Patterns and anom-

alies in Facebook wallposts. In Proceedings of the IEEE/ACM International Conference on Advances in Social Networks

Analysis and Mining (ASONAM’15). 367–374.
Inderjit Dhillon, Yuqiang Guan, and Brian Kulis. 2005. A fast kernel-based multilevel algorithm for graph clustering. In

Proceedings of the ACM Conference on Knowledge Discovery and Data Mining (KDD’05). ACM, 629–634.
Laxman Dhulipala, Igor Kabiljo, Brian Karrer, Giuseppe Ottaviano, Sergey Pupyrev, and Alon Shalita. 2016. Compressing

graphs and indexes with recursive graph bisection. arXiv:1602.08820.
P. Drineas, R. Kannan, and M. W. Mahoney. 2006. Fast Monte Carlo algorithms for matrices III: Computing a compressed

approximate matrix decomposition. SIAM J. Comput. 36, 1 (2006), 184–206.
Cody Dunne and Ben Shneiderman. 2013. Motif simplification: Improving network visualization readability with fan, con-

nector, and clique glyphs. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI’13).
ACM, 3247–3256.

P. Elias. 2006. Universal codeword sets and representations of the integers. IEEE Trans. Inf. Theor. 21, 2 (2006), 194–203.

ACM Computing Surveys, Vol. 51, No. 3, Article 62. Publication date: June 2018.

http://dx.doi.org/10.1109/TVCG.2011.185
http://arxiv.org/abs/1610.00782

Graph Summarization Methods and Applications: A Survey 62:29

Wenfei Fan, Jianzhong Li, Xin Wang, and Yinghui Wu. 2012. Query preserving graph compression. In Proceedings of the

2012 ACM SIGMOD International Conference on Management of Data. ACM, 157–168.
Wenfei Fan, Xin Wang, and Yinghui Wu. 2013. Diversified top-k graph pattern matching. Proc. VLDB Endow. 6, 13 (2013),

1510–1521.
Jing Feng, Xiao He, Nina Hubig, Christian Böhm, and Claudia Plant. 2013. Compression-based graph mining exploiting

structure primitives. In Proceedings of the 2016 IEEE 16th International Conference on Data Mining (ICDM’13). IEEE,
181–190.

Jure Ferlez, Christos Faloutsos, Jure Leskovec, Dunja Mladenic, and Marko Grobelnik. 2008. Monitoring network evolution
using MDL. In Proceedings of the 24th International Conference on Data Engineering (ICDE’08). 1328–1330.

Wenjie Fu, Le Song, and Eric P. Xing. 2009. Dynamic mixed membership blockmodel for evolving networks. In Proceedings

of the 26th Annual International Conference on Machine Learning (ICML’09). ACM, 329–336.
Johannes Gehrke, Edward Lui, and Rafael Pass. 2003. Towards privacy for social networks: A zero-knowledge based defi-

nition of privacy. In Proceedings of the 8th Conference on Theory of Cryptography. 432–449.
Mina Ghashami, Edo Liberty, and Jeff M. Phillips. 2016. Efficient frequent directions algorithm for sparse matrices.

arXiv:1602.00412.
Sean Gilpin, Tina Eliassi-Rad, and Ian Davidson. 2013. Guided learning for role discovery (gLRD): Framework, algorithms,

and applications. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining (KDD’13). ACM, 113–121.
Oshini Goonetilleke, Danai Koutra, Timos Sellis, and Kewen Liao. 2017. Edge labeling schemes for graph data. In Proceedings

of the Scientific and Statistical Database Management Conference (SSDBM’17). ACM, Article 12, 12 pages.
Robert Görke, Pascal Maillard, Christian Staudt, and Dorothea Wagner. 2010. Modularity-driven clustering of dynamic

graphs. In Proceedings of the 9th International Symposium on Experimental Algorithms (SEA’10). 436–448.
Szymon Grabowski and Wojciech Bieniecki. 2014. Tight and simple web graph compression for forward and reverse neigh-

bor queries. Discr. Appl. Math. 163 (2014), 298–306.
Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for networks. In Proceedings of the ACM Con-

ference on Knowledge Discovery and Data Mining (KDD’16). ACM.
Carlos Guestrin, Daphne Koller, Chris Gearhart, and Neal Kanodia. 2003. Generalizing plans to new environments in rela-

tional MDPs. In Proceedings of the 18th International Joint Conference on Artificial Intelligence (IJCAI’03).
Mohammad Al Hasan, Nesreen K. Ahmed, and Jennifer Neville. 2013. Network Sampling: Methods and Applications. Re-

trieved from https://www.cs.purdue.edu/homes/neville/courses/NetworkSampling-KDD13-final.pdf.
Nasrin Hassanlou, Maryam Shoaran, and Alex Thomo. 2013. Probabilistic graph summarization. In Web-Age Information

Management. Springer, 545–556.
Mark Heimann, Haoming Shen, and Danai Koutra. 2018. Node representation learning for multiple networks: The case of

graph alignment. arXiv:1802.06257.
Keith Henderson, Brian Gallagher, Tina Eliassi-Rad, Hanghang Tong, Sugato Basu, Leman Akoglu, Danai Koutra,

Christos Faloutsos, and Lei Li. 2012. RolX: Structural role extraction & mining in large graphs. In Proceedings of the

ACM Conference on Knowledge Discovery and Data Mining (KDD’12). ACM, 1231–1239.
Keith Henderson, Brian Gallagher, Lei Li, Leman Akoglu, Tina Eliassi-Rad, Hanghang Tong, and Christos Faloutsos. 2011.

It’s who you know: Graph mining using recursive structural features. In Proceedings of the ACM Conference on Knowledge

Discovery and Data Mining (KDD’11). ACM, 663–671.
Wilko Henecka and Matthew Roughan. 2015. Lossy compression of dynamic, weighted graphs. In Proceedings of the 2015

3rd International Conference on Future Internet of Things and Cloud (FiCloud’15). 427–434.
Shawndra Hill, Deepak Agarwal, Robert Bell, and Chris Volinsky. 2006. Building an effective representation for dynamic

networks. J. Comput. Graph. Stat. 15 (2006), 1–25.
Christian Hübler, Hans-Peter Kriegel, Karsten Borgwardt, and Zoubin Ghahramani. 2008. Metropolis algorithms for rep-

resentative subgraph sampling. In Proceedings of the 2008 8th IEEE International Conference on Data Mining (ICDM’08).
IEEE, 283–292.

Di Jin and Danai Koutra. 2017a. Exploratory analysis of graph data by leveraging domain knowledge. In Proceedings of the

2017 IEEE International Conference on Data Mining. 187–196.
Di Jin, Aristotelis Leventidis, Haoming Shen, Ruowang Zhang, Junyue Wu, and Danai Koutra. 2017. PERSEUS-HUB: Inter-

active and collective exploration of large-scale graphs. Informatics 4, 3 (2017), 22.
Lisa Jin and Danai Koutra. 2017b. ECOviz: Comparative visualization of time-evolving network summaries. In Proceedings

of the ACM SIGKDD 2017 Workshop on Interactive Data Exploration and Analytics.
U. Kang, Jay-Yoon Lee, Danai Koutra, and Christos Faloutsos. 2014. Net-ray: Visualizing and mining web-scale graphs. In

Proceedings of the 18th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD’14).
U. Kang, Hanghang Tong, Jimeng Sun, Ching-Yung Lin, and Christos Faloutsos. 2011. Gbase: A scalable and general graph

management system. In Proceedings of the ACM Conference on Knowledge Discovery and Data Mining (KDD’11). ACM,
1091–1099.

ACM Computing Surveys, Vol. 51, No. 3, Article 62. Publication date: June 2018.

https://www.cs.purdue.edu/homes/neville/courses/NetworkSampling-KDD13-final.pdf

62:30 Y. Liu et al.

U. Kang, Charalampos E. Tsourakakis, and Christos Faloutsos. 2009. PEGASUS: A peta-scale graph mining system—
implementation and observations. In Proceedings of the 2016 IEEE 16th International Conference on Data Mining

(ICDM’09).
George Karypis and Vipin Kumar. 1999. Multilevel k-way hypergraph partitioning. In Proceedings of the 36th Annual

ACM/IEEE Design Automation Conference. 343–348.
David Kempe, Jon Kleinberg, and Éva Tardos. 2003. Maximizing the spread of influence through a social network. In Pro-

ceedings of the Conference of the ACM Special Interest Group on Knowledge Discovery and Data Mining. ACM.
Kifayat Ullah Khan, Waqas Nawaz, and Young-Koo Lee. 2014. Set-based unified approach for attributed graph summa-

rization. In Proceedings of the IEEE 4th International Conference on Big Data and Cloud Computing (BdCloud’14). IEEE,
378–385.

Mikko Kivel, Alex Arenas, Marc Barthelemy, James P. Gleeson, Yamir Moreno, and Mason A. Porter. 2014. Multilayer
networks. J. Complex Netw. 2, 3 (2014), 203–271.

Arne Koopman and Arno Siebes. 2008. Discovering relational items sets efficiently. In Proceedings of the SIAM International

Conference on Data Mining (SDM’08). 108–119.
Arne Koopman and Arno Siebes. 2009. Characteristic relational patterns. In Proceedings of the ACM Conference on Knowledge

Discovery and Data Mining (KDD’09). 437–446.
Danai Koutra, Abhilash Dighe, Smriti Bhagat, Udi Weinsberg, Stratis Ioannidis, Christos Faloutsos, and Jean Bolot. 2017.

PNP: Fast path ensemble method for movie design. In Proceedings of the ACM Conference on Knowledge Discovery and

Data Mining (KDD’17).
Danai Koutra and Christos Faloutsos. 2017. Individual and Collective Graph Mining: Principles, Algorithms, and Applications.

Synthesis Lectures on Data Mining and Knowledge Discovery. Morgan & Claypool.
Danai Koutra, Di Jin, Yuanchi Ning, and Christos Faloutsos. 2015. Perseus: An interactive large-scale graph mining and

visualization tool. Proc. VLDB Endow. 8, 12, 1924–1927.
Danai Koutra, U. Kang, Jilles Vreeken, and Christos Faloutsos. 2014b. VoG: Summarizing and understanding large graphs.

In Proceedings of the SIAM international Conference on Data Mining (SDM’14). 91–99.
Danai Koutra, U. Kang, Jilles Vreeken, and Christos Faloutsos. 2014a. VoG: Summarizing and understanding large graphs.

In Proceedings of the SIAM international Conference on Data Mining (SDM’14). SIAM.
Danai Koutra, Vasileios Koutras, B. Aditya Prakash, and Christos Faloutsos. 2013. Patterns amongst competing task fre-

quencies: Super-linearities, and the almond-DG model. In Proceedings of the 17th Pacific-Asia Conference on Knowledge

Discovery and Data Mining (PAKDD’13). 201–212.
Danai Koutra, Evangelos E. Papalexakis, and Christos Faloutsos. 2012. TensorSplat: Spotting latent anomalies in time. In

Proceedings of the 2012 16th Panhellenic Conference on Informatics (PCI’12). IEEE, 144–149.
Danai Koutra, Neil Shah, Joshua Vogelstein, Brian Gallagher, and Christos Faloutsos. 2015. DeltaCon: A principled massive-

graph similarity function with attribution. ACM Trans. Knowl. Discov. Data 10, 3, Article 28.
Danai Koutra, Joshua Vogelstein, and Christos Faloutsos. 2013. DeltaCon: A principled massive-graph similarity function.

In Proceedings of the SIAM International Conference on Data Mining (SDM’13). 162–170.
Luigi Laura, Stefano Leonardi, Guido Caldarelli, and Paolo De Los Rios. 2002. A multi-layer model for the web graph. In

On-Line Proceedings of the 2nd International Workshop on Web Dynamics.
Matthijs Leeuwen van Leeuwen, Jilles Vreeken, and Arno Siebes. 2006. Compression picks the item sets that matter. In

Proceedings of the Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD’06). 585–592.
Kristen LeFevre and Evimaria Terzi. 2010. GraSS: Graph structure summarization. In Proceedings of the SIAM International

Conference on Data Mining (SDM’10). 454–465.
Jure Leskovec, Lars Backstrom, Ravi Kumar, and Andrew Tomkins. 2008. Microscopic evolution of social networks. In

Proceedings of the ACM Conference on Knowledge Discovery and Data Mining (KDD’08). 462–470.
Jure Leskovec and Christos Faloutsos. 2007. Scalable modeling of real graphs using Kronecker multiplication. In Proceedings

of the 24th International Conference on Machine Learning (ICML’07). 497–504.
Jure Leskovec, Jon M. Kleinberg, and Christos Faloutsos. 2005. Graphs over time: Densification laws, shrinking diameters

and possible explanations. In Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining. 177–187.
Jure Leskovec, Anand Rajaraman, and Jeffrey David Ullman. 2014. Mining of Massive Datasets. Cambridge University Press.
Cheng-Te Li and Shou-De Lin. 2009. Egocentric information abstraction for heterogeneous social networks. In Proceedings

of the International Conference on Advances in Social Network Analysis and Mining (ASONAM’09). IEEE, 255–260.
Edo Liberty. 2013. Simple and deterministic matrix sketching. In Proceedings of the ACM Conference on Knowledge Discovery

and Data Mining (KDD’13). ACM, 581–588.
Yongsub Lim, U. Kang, and Christos Faloutsos. 2014. SlashBurn: Graph compression and mining beyond caveman commu-

nities. IEEE Trans. Knowl. Data Eng. 26, 12 (2014), 3077–3089.

ACM Computing Surveys, Vol. 51, No. 3, Article 62. Publication date: June 2018.

Graph Summarization Methods and Applications: A Survey 62:31

Shou-De Lin, Mi-Yen Yeh, and Cheng-Te Li. 2013. Sampling and summarization for social networks. In Proceedings of the

17th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD’13).
Xuemin Lin, Qing Liu, Yidong Yuan, and Xiaofang Zhou. 2003. Multiscale histograms: Summarizing topological relations

in large spatial datasets. In Proceedings of the International Conference on Very Large Databases (VLDB’03). 814–825.
Yu-Ru Lin, Hari Sundaram, and Aisling Kelliher. 2008. Summarization of social activity over time: People, actions and

concepts in dynamic networks. In Proceedings of the 21st ACM International Conference on Information and Knowledge

Management (CIKM’08). 1379–1380.
Bing Liu, Wynne Hsu, and Yiming Ma. 1999. Pruning and summarizing the discovered associations. In Proceedings of the

5th ACM SIGKDD International Conference Knowledge Discovery and Data Mining (KDD’99). 145–154.
Chunyang Liu and Ling Chen. 2016. Summarizing uncertain transaction databases by probabilistic tiles. In Proceedings of

the International Joint Conference on Neural Networks (IJCNN’16). IEEE, 4375–4382.
Wei Liu, Andrey Kan, Jeffrey Chan, James Bailey, Christopher Leckie, Jian Pei, and Ramamohanarao Kotagiri. 2012. On

compressing weighted time-evolving graphs. In Proceedings of the 21st ACM International Conference on Information

and Knowledge Management (CIKM’12). ACM, 2319–2322.
Yike Liu, Neil Shah, and Danai Koutra. 2015. An empirical comparison of the summarization power of graph clustering

methods. arXiv:1511.06820.
Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo Kyrola, and Joseph M. Hellerstein. 2012. Distributed

graphlab: A framework for machine learning and data mining in the cloud. Proc. VLDB Endow. 5, 8 (2012), 716–727.
Antonio Maccioni and Daniel J. Abadi. 2016. Scalable pattern matching over compressed graphs via dedensification. In

Proceedings of the ACM Conference on Knowledge Discovery and Data Mining (KDD’16). ACM, 1755–1764.
Arun S. Maiya and Tanya Y. Berger-Wolf. 2010. Sampling community structure. In Proceedings of the 25th International

Conference Conference on the World Wide Web (WWW’10). ACM, 701–710.
M. Mampaey, J. Vreeken, and N. Tatti. 2011. Summarizing Data with Itemsets Using Maximum Entropy Models. Technical

Report 2011/02. University of Antwerp.
Sebastian Maneth and Fabian Peternek. 2016. Compressing graphs by grammars. In Proceedings of the 2016 IEEE 32nd

International Conference on Data Engineering (ICDE’16). IEEE, 109–120.
Koji Maruhashi, Fan Guo, and Christos Faloutsos. 2011. Multiaspectforensics: Pattern mining on large-scale heterogeneous

networks with tensor analysis. In Proceedings of the 2011 International Conference on Advances in Social Networks Analysis

and Mining. 203–210.
Hossein Maserrat and Jian Pei. 2010. Neighbor query friendly compression of social networks. In Proceedings of the ACM

Conference on Knowledge Discovery and Data Mining (KDD’10).
Hossein Maserrat and Jian Pei. 2012. Community preserving lossy compression of social networks. In Proceedings of the

2016 IEEE 16th International Conference on Data Mining (ICDM’12). IEEE, 509–518.
Michael Mathioudakis, Francesco Bonchi, Carlos Castillo, Aristides Gionis, and Antti Ukkonen. 2011. Sparsification of

influence networks. In Proceedings of the ACM Conference on Knowledge Discovery and Data Mining (KDD’11). 529–537.
Yasir Mehmood, Nicola Barbieri, Francesco Bonchi, and Antti Ukkonen. 2013. Csi: Community-level social influence anal-

ysis. In Machine Learning and Knowledge Discovery in Databases. Springer, 48–63.
Pauli Miettinen and Jilles Vreeken. 2011. Model order selection for boolean matrix factorization. In Proceedings of the ACM

Conference on Knowledge Discovery and Data Mining (KDD’11). 51–59.
Pauli Miettinen and Jilles Vreeken. 2014. mdl4bmf: Minimum description length for Boolean matrix factorization. ACM

Trans. Knowl. Discov. Data 8, 4 (2014), 1–30.
Saket Navlakha, Rajeev Rastogi, and Nisheeth Shrivastava. 2008. Graph summarization with bounded error. In Proceedings

of the ACM Special Interest Group on Management of Data (SIGMOD’08). 419–432.
Mark E. J. Newman and Michelle Girvan. 2004. Finding and evaluating community structure in networks. Phys. Rev. E 69,

2 (2004), 026113+.
Carlos Ordonez, Norberto Ezquerra, and Cesar A. Santana. 2006. Constraining and summarizing association rules in medical

data. Knowl. Inf. Syst. 9, 3 (2006), 259–283.
Themis Palpanas, Michail Vlachos, Eamonn J. Keogh, and Dimitrios Gunopulos. 2008. Streaming time series summarization

using user-defined amnesic functions. IEEE Trans. Knowl. Data Eng. 20, 7 (2008), 992–1006.
Jia-Yu Pan, Hyung-Jeong Yang, and Christos Faloutsos. 2004. MMSS: Multi-modal story-oriented video summarization. In

Proceedings of the 2016 IEEE 16th International Conference on Data Mining (ICDM’04). 491–494.
Jian Pei, Daxin Jiang, and Aidong Zhang. 2005. On mining cross-graph quasi-cliques. In Proceedings of the ACM Conference

on Knowledge Discovery and Data Mining (KDD’05). 228–238.
David Peleg and Alejandro A. Schäffer. 1989. Graph spanners. J. Graph Theory 13, 1 (1989), 99–116.
Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk: Online learning of social representations. In Proceedings

of the ACM Conference on Knowledge Discovery and Data Mining (KDD’14). ACM, 701–710.

ACM Computing Surveys, Vol. 51, No. 3, Article 62. Publication date: June 2018.

62:32 Y. Liu et al.

Robert Pienta, Acar Tamersoy, Hanghang Tong, and Duen Horng Chau. 2014. MAGE: Matching approximate patterns in
richly-attributed graphs. In Proceedings of the 2014 IEEE International Conference on Big Data. 585–590.

B. Aditya Prakash, Jilles Vreeken, and Christos Faloutsos. 2012. Spotting culprits in epidemics: How many and which ones?
In Proceedings of the 2016 IEEE 16th International Conference on Data Mining (ICDM’12). IEEE.

M. Purohit, B. A. Prakash, C. Kang, Y. Zhang, and V. S. Subrahmanian. 2014. Fast influence-based coarsening for large
networks. In Proceedings of the ACM Conference on Knowledge Discovery and Data Mining (KDD’14). ACM, 1296–1305.

Qiang Qu, Siyuan Liu, Christian S. Jensen, Feida Zhu, and Christos Faloutsos. 2014. Interestingness-driven diffusion process
summarization in dynamic networks. In Proceedings of the European Conference on Machine Learning and Principles and

Practice of Knowledge Discovery in Databases (ECML/PKDD’14). 597–613.
Davood Rafiei and Stephen Curial. 2005. Effectively visualizing large networks through sampling. In Proceedings of the 16th

IEEE Visualization Conference (VIS’05). 48.
Sriram Raghavan and Hector Garcia-Molina. 2003. Representing web graphs. In Proceedings of the 2003 IEEE International

Conference on Data Engineering (ICDE’03). IEEE, 405–416.
Xuguang Ren and Junhu Wang. 2015. Exploiting vertex relationships in speeding up subgraph isomorphism over large

graphs. Proc. VLDB Endow. 8, 5 (2015), 617–628.
Leonardo F. R. Ribeiro, Pedro H. P. Saverese, and Daniel R. Figueiredo. 2017. struc2vec: Learning node representations from

structural identity. In Proceedings of the ACM Conference on Knowledge Discovery and Data Mining (KDD’17). ACM, 385–
394.

Matteo Riondato, David García-Soriano, and Francesco Bonchi. 2014. Graph summarization with quality guarantees. In
Proceedings of the 2016 IEEE 16th International Conference on Data Mining (ICDM’14). IEEE, 947–952.

Ryan Rossi, Brian Gallagher, Jennifer Neville, and Keith Henderson. 2012. Role-dynamics: Fast mining of large dynamic
networks. InProceedings of the 25th International Conference Companion on the World Wide Web (WWW’12 Companion).
ACM, 997–1006.

T. Safavi, C. Sripada, and D. Koutra. 2017. Scalable hashing-based network discovery. In Proceedings of the 2016 IEEE 16th

International Conference on Data Mining (ICDM’17). 405–414.
Barna Saha and Pabitra Mitra. 2007. Dynamic algorithm for graph clustering using minimum cut tree. In Proceedings of the

SIAM International Conference on Data Mining (SDM’07). 581–586.
Neil Shah, Danai Koutra, Lisa Jin, Tianmin Zou, Brian Gallagher, and Christos Faloutsos. 2017. On summarizing large-scale

dynamic graphs. IEEE Data Eng. Bull. 40, 3 (2017), 75–88.
Neil Shah, Danai Koutra, Tianmin Zou, Brian Gallagher, and Christos Faloutsos. 2015. TimeCrunch: Interpretable dynamic

graph summarization. In Proceedings of the ACM Conference on Knowledge Discovery and Data Mining (KDD’15).
P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, D. Ramage, N. Amin, B. Schwikowski, and T. Ideker. 2003.

Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 11
(2003), 2498.

Umang Sharan and Jennifer Neville. 2008. Temporal-relational classifiers for prediction in evolving domains. In Proceedings

of the 2016 IEEE 16th International Conference on Data Mining (ICDM’08). 540–549.
Z. Shen, K.-L. Ma, and T. Eliassi-Rad. 2006. Visual analysis of large heterogeneous social networks by semantic and struc-

tural abstraction. IEEE Trans. Vis. Comput. Graph. 12, 6 (2006), 1427–1439.
Lei Shi, Hanghang Tong, Jie Tang, and Chuang Lin. 2015. VEGAS: Visual influence graph summarization on citation net-

works. IEEE Trans. Knowl. Data Eng. 27, 12 (2015), 3417–3431.
Ben Shneiderman. 2008. Extreme visualization: Squeezing a billion records into a million pixels. In Proceedings of the ACM

Special Interest Group on Management of Data (SIGMOD’08).
Mahsa Shoaran, Alex Thomo, and Jens H. Weber-Jahnke. 2013. Zero-knowledge private graph summarization. In Proceed-

ings of the IEEE International Conference on Big Data. IEEE, 597–605.
Koen Smets and Jilles Vreeken. 2011. The odd one out: Identifying and characterising anomalies. In Proceedings of the SIAM

International Conference on Data Mining (SDM’11). 804–815.
Qi Song, Yinhui Wu, and Xin Luna Dong. 2016. Mining summaries for knowledge graph search. In Proceedings of the 2016

IEEE 16th International Conference on Data Mining (ICDM’16). 1215–1220.
Sucheta Soundarajan, Acar Tamersoy, Elias B. Khalil, Tina Eliassi-Rad, Duen Horng Chau, Brian Gallagher, and Kevin

Roundy. 2016. Generating graph snapshots from streaming edge data. In Proceedings of the 25th International Conference

Companion on the World Wide Web. 109–110.
Daniel A. Spielman and Nikhil Srivastava. 2011. Graph sparsification by effective resistances. SIAM J. Comput. 40, 6 (2011),

1913–1926. https://doi.org/10.1137/080734029
Olaf Sporns. 2010. Networks of the Brain. MIT Press, Cambridge, MA.
Jimeng Sun, Christos Faloutsos, Spiros Papadimitriou, and Philip S. Yu. 2007. GraphScope: Parameter-free mining of large

time-evolving graphs. In Proceedings of the ACM Conference on Knowledge Discovery and Data Mining (KDD’07). ACM,
687–696.

ACM Computing Surveys, Vol. 51, No. 3, Article 62. Publication date: June 2018.

https://doi.org/10.1137/080734029

Graph Summarization Methods and Applications: A Survey 62:33

Jimeng Sun, Charalampos E. Tsourakakis, Evan Hoke, Christos Faloutsos, and Tina Eliassi-Rad. 2008. Two heads better
than one: Pattern discovery in time-evolving multi-aspect data. Data Min. Knowl. Discov. 17, 1 (2008), 111–128.

Jimeng Sun, Yinglian Xie, Hui Zhang, and Christos Faloutsos. 2007. Less is more: Compact matrix decomposition for large
sparse graphs. In Proceedings of the SIAM International Conference on Data Mining (SDM’07).

Yizhou Sun and Jiawei Han. 2012. Mining Heterogeneous Information Networks: Principles and Methodologies. Morgan &
Claypool.

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. 2015. LINE: Large-scale information network
embedding. In Proceedings of the 24th International Conference on World Wide Web (WWW’15). 1067–1077.

Nan Tang, Qing Chen, and Prasenjit Mitra. 2016. Graph stream summarization: From big bang to big crunch. In Proceedings

of the 2016 International Conference on Management of Data. ACM, 1481–1496.
Chayant Tantipathananandh and Tanya Berger-Wolf. 2011. Finding communities in dynamic social networks. In Proceedings

of the 2016 IEEE 16th International Conference on Data Mining (ICDM’11). IEEE, 1236–1241.
Lini T. Thomas, Satyanarayana R. Valluri, and Kamalakar Karlapalem. 2010. MARGIN: Maximal frequent subgraph mining.

ACM Trans. Knowl. Discov. Data 4, 3 (2010), 10:1–10:42.
Yuanyuan Tian, Richard A. Hankins, and Jignesh M. Patel. 2008. Efficient aggregation for graph summarization. In Proceed-

ings of the ACM Special Interest Group on Management of Data (SIGMOD’08). ACM, 567–580.
Yuanyuan Tian and Jignesh M. Patel. 2008. TALE: A tool for approximate large graph matching. In Proceedings of the 2008

IEEE 24th International Conference on Data Engineering. 963–972.
Hannu Toivonen, Fang Zhou, Aleksi Hartikainen, and Atte Hinkka. 2011. Compression of weighted graphs. In Proceedings

of the ACM Conference on Knowledge Discovery and Data Mining (KDD’11). 965–973.
Hanghang Tong, Christos Faloutsos, Brian Gallagher, and Tina Eliassi-Rad. 2007. Fast best-effort pattern matching in large

attributed graphs. In Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining. 737–746.
Jilles Vreeken, Matthijs van Leeuwen, and Arno Siebes. 2011. Krimp: Mining itemsets that compress. Data Min. Knowl. Disc.

23, 1 (2011), 169–214.
Bianca Wackersreuther, Peter Wackersreuther, Annahita Oswald, Christian Böhm, and Karsten M. Borgwardt. 2010. Fre-

quent subgraph discovery in dynamic networks. In Proceedings of the 8th Workshop on Mining and Learning with Graphs.
ACM, 155–162.

Daixin Wang, Peng Cui, and Wenwu Zhu. 2016. Structural deep network embedding. In Proceedings of the ACM Conference

on Knowledge Discovery and Data Mining (KDD’16).
Jianyong Wang and George Karypis. 2004. SUMMARY: Efficiently summarizing transactions for clustering. In Proceedings

of the 2016 IEEE 16th International Conference on Data Mining (ICDM’04). 241–248.
S. Wasserman and J. Galaskiewicz. 1994. Advances in Social Network Analysis: Research in the Social and Behavioral Sciences.

SAGE Publications.
Ye Wu, Zhinong Zhong, Wei Xiong, and Ning Jing. 2014. Graph summarization for attributed graphs. In Proceedings of the

International Conference on Information Science, Electronics, and Electrical Engineering (ISEEE’14). IEEE, 503–507.
Yang Xiang, Ruoming Jin, David Fuhry, and Feodor Dragan. 2010. Summarizing transactional databases with overlapped

hyperrectangles. Data Min. Knowl. Disc. 23, 2, 215–251.
Kevin S. Xu, Mark Kliger, and Alfred O. Hero III. 2011. Tracking communities in dynamic social networks. In Proceedings

of the 4th International Conference on Social Computing, Behavioral-Cultural Modeling, & Prediction (SBP’11). 219–226.
Zhiqiang Xu, Yiping Ke, Yi Wang, Hong Cheng, and James Cheng. 2012. A model-based approach to attributed graph

clustering. In Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data (SIGMOD’12).
ACM, 505–516.

Xifeng Yan, Hong Cheng, Jiawei Han, and Dong Xin. 2005. Summarizing itemset patterns: A profile-based approach. In
Proceedings of the ACM Conference on Knowledge Discovery and Data Mining (KDD’05). 314–323.

Jaewon Yang and Jure Leskovec. 2013. Overlapping community detection at scale: A nonnegative matrix factorization
approach. In Proceedings of the 6th ACM International Conference on Web Search and Data Mining (WSDM’13). ACM,
587–596.

Jaewon Yang, Julian McAuley, and Jure Leskovec. 2013. Community detection in networks with node attributes. In Pro-

ceedings of the 2016 IEEE 16th International Conference on Data Mining (ICDM’13). IEEE, 1151–1156.
Liu Yang, Susan T. Dumais, Paul N. Bennett, and Ahmed Hassan Awadallah. 2017. Characterizing and predicting enterprise

email reply behavior. In Proceedings of the 40th International ACM SIGIR Conference on Research and Development in

Information Retrieval (SIGIR’17). ACM, 235–244.
Jinguo You, Qiuping Pan, Wei Shi, Zhipeng Zhang, and Jianhua Hu. 2013. Towards graph summary and aggregation: A

survey. In Social Media Retrieval and Mining. Springer, 3–12.
Ning Zhang, Yuanyuan Tian, and Jignesh M. Patel. 2010. Discovery-driven graph summarization. In Proceedings of the 2003

IEEE International Conference on Data Engineering (ICDE’10). 880–891.

ACM Computing Surveys, Vol. 51, No. 3, Article 62. Publication date: June 2018.

62:34 Y. Liu et al.

Peixiang Zhao, Charu C. Aggarwal, and Min Wang. 2011. gSketch: On query estimation in graph streams. Proc. VLDB

Endow. 5, 3 (2011), 193–204.
Yang Zhou, Hong Cheng, and Jeffrey Xu Yu. 2009. Graph clustering based on structural/attribute similarities. Proc. VLDB

Endow. 2, 1 (2009), 718–729.
Linhong Zhu, Majid Ghasemi-Gol, Pedro Szekely, Aram Galstyan, and Craig A. Knoblock. 2016. Unsupervised entity res-

olution on multi-type graphs. In Proceedings of the International Semantic Web Conference. 649–667.

Received December 2016; revised January 2018; accepted February 2018

ACM Computing Surveys, Vol. 51, No. 3, Article 62. Publication date: June 2018.

