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Abstract: Graphs emerge naturally in many domains, such as social science, neuroscience,
transportation engineering, and more. In many cases, such graphs have millions or billions of nodes
and edges, and their sizes increase daily at a fast pace. How can researchers from various domains
explore large graphs interactively and efficiently to find out what is ‘important’? How can multiple
researchers explore a new graph dataset collectively and “help” each other with their findings?
In this article, we present PERSEUS-HUB, a large-scale graph mining tool that computes a set of graph
properties in a distributed manner, performs ensemble, multi-view anomaly detection to highlight
regions that are worth investigating, and provides users with uncluttered visualization and easy
interaction with complex graph statistics. PERSEUS-HUB uses a Spark cluster to calculate various
statistics of large-scale graphs efficiently, and aggregates the results in a summary on the master
node to support interactive user exploration. In PERSEUS-HUB, the visualized distributions of graph
statistics provide preliminary analysis to understand a graph. To perform a deeper analysis, users with
little prior knowledge can leverage patterns (e.g., spikes in the power-law degree distribution) marked
by other users or experts. Moreover, PERSEUS-HUB guides users to regions of interest by highlighting
anomalous nodes and helps users establish a more comprehensive understanding about the graph at
hand. We demonstrate our system through the case study on real, large-scale networks.

Keywords: large-scale graphs; visualization; visual analytics; distributions; interaction;
distributed computations; anomaly detection; collective analysis

1. Introduction

The concept of big data has been deeply rooted among people in both academia and industry.
Researchers and analysts from various domains require fast and efficient techniques to mine useful
information from large-scale datasets. Among the different types of data, an important category is
graphs or networks as they naturally represent entities in different domains and the relationships
between them, such as compounds in chemistry [1,2], interactions between proteins in biology [3],
symptom relations in healthcare [4], communication between people and behavioral patterns [5,6].
Accordingly, the problem of large-scale graph mining has attracted tremendous interest and efforts
and, as a result, many large-scale mining techniques, tools, and systems have been developed.

Interactive visualization (or visual analytics) is commonly used to obtain an overview of the
data at hand and to perform preliminary, exploratory analysis. Although such “rough” analysis
is not always accurate and could be biased, it is a general technique to handle data from different
domains before forming concrete questions about the data and seeking specific patterns in them.
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Unlike most distributed algorithms based on abstraction or sophisticated workflows to achieve
efficiency, visualization can put the spotlight on the computed patterns to help the user understand both
the data and the algorithm. This is particularly important in domains where a researcher or analyst may
not have programming expertise. Moreover, beyond static visualization (e.g., plot of a graph statistics
distribution which is often used to discover patterns and laws in the data), interaction provides users
with the option of exploring patterns of interest with rich side information and discovering relations
within the data.

There are many existing tools and systems that support the interactive exploration of graph
data [7,8], yet most of them either assume the user has some prior knowledge and knows what she is
looking for, or guide the user to patterns that are worth exploring based on predefined interestingness
measures (e.g., low degree). Although such techniques could help users discover new knowledge in
specific graphs, they cannot be readily used in different domains. For example, low-degree nodes are
common in Twitter and other social networks, as most users have a limited number of followers/friends
and few interactions. However, if a user applies the techniques designed for analyzing social networks
to structural brain graphs, important information could be overlooked. This is because in brain graphs,
low-degree nodes could represent neurons that are less active, and could be an indicator of mental
diseases (e.g., Schizophrenia). A different system per type of input would avoid this problem, but, at
the same time, it would be impractical and time-consuming. Therefore, a graph mining platform that
allows users across different domains to collectively analyze datasets, guide the process of exploration,
and share the outcomes with others, could help alleviate the above-mentioned shortcomings.

Motivated by this observation, we present PERSEUS-HUB, a general large-scale graph mining
framework that computes a set of commonly explored graph properties in a distributed manner,
performs ensemble, multi-view anomaly detection to highlight regions that are worth investigating,
provides users with uncluttered interactive visualization, and supports collective analysis of data
from multiple users. It builds and improves upon a simple, Hadoop-based graph mining framework,
PERSEUS [9,10], in terms of speed, depth of analysis, system-guided anomaly detection, interactive
features, and collective analysis. Our proposed framework provides tools that support both preliminary
and in-depth analysis so that users from different domains can gain insights into their graph data.

Our system consists of three main components:

• Two-Level Summarization Scheme: To summarize the input graph efficiently, PERSEUS-HUB

interactively visualizes both aggregate and node-specific patterns. It summarizes the graph data
in terms of univariate and bivariate distributions—such as the clustering coefficient distribution
and the degree vs. PageRank distribution—to reveal different aspects of the input graph.
The compliance to or deviation from common laws in the distributions (e.g., power-law pattern in
social networks) can guide attention to specific nodes or graph regions. At the aggregate level,
points that are close to each other in the plots are aggregated into ‘super-points’ to efficiently
render, visualize, and support interaction with the distribution plots for graphs with even millions
of nodes. At the node-specific level, detailed information can be obtained for fine-granularity
analysis such as queries for per node statistics.

• Collective Data Analysis: To make graph analysis effective and comprehensive for non-experts,
PERSEUS-HUB supports publicly sharing processed data and discovered patterns to help other
analysts with their exploration. The PERSEUS-HUB service runs on a public AWS (Amazon Web
Service) EMR (Elastic MapReduce) Spark cluster and displays datasets and discovered patterns,
enabling collective analysis and ‘shared’ knowledge. Especially non-experts can benefit from
interacting with the discoveries of expert users, and this has potential to advance the knowledge
in interdisciplinary domains.

• Ensemble Anomaly Detection: In addition to collective data analysis that can guide user attention
to regions that are identified as interesting by other analysts or experts, PERSEUS-HUB runs
multiple scalable anomaly detection algorithms on the summarized statistics distributions to
identify outliers of various types in an ensemble manner. For this purpose, the system leverages
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algorithms such as G-FADD (Grid Fast Anomaly Detection algorithm given Duplicates [11]),
a fast, density- based anomaly detection method to find local and global outliers in the distribution
plots, as well as ABOD (Angle Based Outlier Detection [12]), an angle-based outlier detection
method that is particularly suitable for analyzing highly dimensional data.

The rest of this paper is organized as follows: Section 2 describes the related work. Sections 3 and 4
give the description of PERSEUS-HUB and its components, and an overview of the web application
integration, respectively. We showcase the application of PERSEUS-HUB to interactively analyze large
graph datasets in Section 5, and conclude with future directions in Section 6.

2. Related Work

Our work is related to graph visualization and interactive analytics, as well as anomaly detection.

2.1. Graph Visualization and Interactive Analytics

There exists a large variety of visualization systems, each of which tries to visualize different
types of networks targeting various kinds of users. Refs. [7,13,14] take an exploratory search approach
based on the assumption that users are non-experts and unfamiliar with their datasets. Therefore,
they guide users to perform analysis by incrementally querying information or browsing through the
various relationships in the datasets to discover any unexpected results. FACETS [13] allows users
to adaptively explore large graphs by only showing their most interesting parts. The interestingness
of a node is based on how surprising its neighbor’s data distributions are, as well as how well it
matches what the user has chosen to explore. In this way, FACETS builds a user profile that customizes
which nodes in a graph are explored. Similarly, Voyager 2 [14] is another graph visualization tool that
combines manual and automatic chart specification in one system. More specifically, Voyager 2 allows
users to manually vary or specify graph properties through the use of wildcards, which generate
multiple charts in parallel for visualization, while the system also automatically recommends relevant
visualization based on the user’s current focus.

May et al. [15] proposed a system that helps user navigation using signposts to indicate
the direction of off-screen regions of the graph that the user would be interested to navigate to.
The signposts are generated dynamically depending on the current visible nodes. This visualization
system allows the representation of interesting regions of a graph with a small visual footprint.
An interesting hybrid visualization system of networks is NodeTrix [16], which uses node-link
diagrams to show the global structure of a network and uses adjacency matrices to provide a more
detailed view of specific communities in the network. NodeTrix provides users with a large set
of interaction techniques, which allows easy modification of network organization. PivotSlice [17]
is an interactive visualization tool for faceted data exploration which allows the user to manage
a collection of dynamic queries in a multi-focus and multi-scale tabular view. In this way, the user can
explore a large dataset by efficiently subdividing it into several meaningful subsets with customized
semantics. Refinery [18] is an interactive visualization system that supports bottom-up exploration of
heterogeneous networks through associative browsing which allows the user to step iteratively from
familiar to novel bits of information. By computing degree-of-interest scores for associated content
using a random-walk algorithm, Refinery allows users to visualize sub-graphs of items relevant to
their queries. Similarly, GLO-STIX [7] is a graph visualization system that allows a user to interactively
explore a graph by applying Graph-Level Operations (GLOs). GLOs are encapsulated manipulations
of a graph visualization that allow a user to incrementally modify a graph without committing to
a specific graph type, giving the user the choice of fully customizing their visualization through a set
of primitive graph-level operations.

In addition to providing the user with some exploratory approaches to interact with their network
data, there are some visualization tools designed to help users find anomalies or malicious nodes.
Apolo [8] is a graph tool used for attention routing. The user picks a few seed nodes, and Apolo
interactively expands their vicinities, enabling sense-making. An anomaly detection system for large
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graphs, OPAvion [19], mines graph features using Pegasus [20] and spots anomalies by employing
OddBall [21] and, lastly, interactively visualizes the anomalous nodes via Apolo. Perseus [9] is
a Hadoop-based graph mining framework, which inspired the design of PERSEUS-HUB. Improving on
that, PERSEUS-HUB supports faster analytics of a variety of graph statistics on Spark; fast and ensemble,
multi-view anomaly detection; collective analysis of data and findings between users enabled by its
deployment on AWS; and a wide range of interaction features in the frontend that make the interface
easy-to-use. Other works on visualization tackle the issue of how to aggregate large-scale graphs
while retaining important information. NetRay [22] focuses on informative visualizations of the spy
plots, distribution plots, and correlation plots of web-scale graphs. Dunne and Shneiderman [23]
introduce the idea of motif simplification in which common patterns of nodes and links are replaced
with compact and meaningful glyphs that can portray relationships within a network more clearly
while requiring less screen space to represent the network.

According to Nielsen [24], website response time of 0.1 s gives the feeling of instantaneous
response; one second keeps the user’s flow of thought seamless, although it is a noticeable delay;
and 10 s keeps the user’s attention, but faster response time is definitely desired. To support interaction
and achieve very short response time, most approaches apply aggregation techniques, clustering,
sketches, or other offline pre-processing algorithms which result in a significantly smaller view of the
input data that is fast to query. Recent works in the database community that turned to interactive
systems include query refinement with feedback [25]; query exploration for WHERE queries [26]; query
steering in DBMS (Database Management System) [27]; query recommendations for interactive
database exploration [28]; interactive exploration of interesting itemsets and association rules in
transaction (supermarket) DB [29]; and visual analytics with data-driven recommendations that
support simple aggregation-based queries of relational data [30,31]. In the area of graphs, most methods
focus on interactively exploring the graph structure by starting from a set of user-selected nodes [32],
and also the idea of community-within-community visualization via multi-resolution [33].

Unlike the above-mentioned systems, PERSEUS-HUB focuses on efficiently summarizing large
graph data in terms of several distributions (or correlations) of properties instead of visualizing only
the network structure or the vicinities of specific ‘interesting’ nodes. Moreover, unlike its precursor [9],
it enables collective analysis of datasets from multiple users or experts. Table 1 gives a qualitative
comparison of PERSEUS-HUB with existing graph visualization tools.

Table 1. Qualitative comparison of PERSEUS-HUB with alternative approaches. (i) Node analytics:
Does the visualization framework provide node-specific statistics or analytics? (ii) Mixed Expertise:
Can the visualization tool be used by users with varying levels of expertise (e.g., experts, beginners
or users with limited familiarity with the graph data)? (iii) Automatic Pattern Detection: Does the
visualization tool automatically detect specific patterns and guide users to them? (iv) Collective
Analysis: Does the visualization tool support information sharing among users? (v) Scalability: Can
users analyze large-scale, real-world graphs with the tool? (vi) Domain-independence: Does the tool
support graphs from multiple domains (e.g., social networks, neural networks, etc.)?

Node Analytics Mixed Expertise Auto Detection Collective An. Scalability Domain-Ind.

GLO-STIX [7] 7 3 3 7 ? 3

FACETS [13] 3 3 3 7 3 3

Voyager 2 [14] 3 3 3 7 7 3

Signposts [15] 3 7 3 7 7 7

NodeTrix [16] 3 7 7 7 7 7

PivotSlice [17] 3 7 7 7 3 3

Refinery [18] 3 7 3 7 3 3

Apolo [8] 3 3 7 7 7 3

OPAvion [19] 3 3 3 7 3 3

NetRay [22] 7 7 3 7 3 3

Motif-Simp [23] 3 3 7 7 3 3

PERSEUS [9,10] 3 7 3 7 3 3

PERSEUS-HUB 3 7 3 3 3 3
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2.2. Anomaly Detection

Anomaly detection in static graphs has been studied using various data mining and statistical
techniques [11,19,22,34]. Two surveys [35,36] describe various outlier detection methods for static and
time-evolving graphs. Here we describe just a small set of approaches. Local outlier factor (LOF) [37]
is a popular density-based anomaly detection method that compares the local density of each data
point to the density of its neighbors by employing the k-nearest neighbor (kNN) technique to measure
how isolated an object is with respect to its neighborhood. Grid-based FADD (G-FADD) [38] improves
on the quadratic complexity of LOF by cleverly handling duplicate points and applying a grid on
a multi-dimensional space so that only cells that satisfy density-specific criteria need investigation
for outliers. AutoPart [39] is a graph clustering algorithm that detects anomalous edges based on the
Minimum Description Language (MDL) encoding principle. In AutoPart, an edge whose removal
significantly reduces the total encoding cost is considered to be an outlier. Thus, AutoPart finds the
block of nodes where the removal of an edge leads to the maximum immediate reduction in cost.
Since all edges within that block contribute equally to the cost, all of them are considered outliers.
SCAN [40] detects clusters and outliers (vertices that are marginally connected to clusters) in networks
by using the structure and connectivity as clustering criteria. SCAN finds the core nodes which share
structural similarity with many neighbors and cluster them with their neighbors. Nodes that connect
to one or zero clusters are determined as the outliers.

PERSEUS-HUB runs anomaly detection algorithms with and without ensembles in an
offline manner and displays the generated results in an aggregate summarization panel.
PERSEUS-HUB also provides detailed information about the anomalous nodes through node-specific
interactive visualization.

3. PERSEUS-HUB: System Description

PERSEUS-HUB is an interactive, collective graph exploration system deployed in the public AWS
EMR-Spark cluster that supports large-scale data analysis. Users can interactively explore their graph
data in their own private space, and, if they choose, they can also publish (some of) their data and
discoveries so that other experts or users can use them as a starting point and further investigate the
data without duplicating the work.

The system overview of PERSEUS-HUB and the workflow of collective analysis is illustrated in
Figure 1, while an instance of the ‘user view’ is given in Figure 2. In a nutshell, PERSEUS-HUB consists
of three modules: (1) Distributed Statistics Computation, which computes various graph statistics
for the input graph in a distributed manner (distribution and correlation plots of those statistics are
shown in Figure 2); (2) Ensemble anomaly detection that discovers ‘outlier’ nodes in the graph by
integrating multiple views (i.e., different statistic distributions) and multiple detection algorithms; and
(3) Interactive visualization that provides both aggregated summarization and node-specific statistics
to the users. In the following subsections, we describe each module of PERSEUS-HUB (Sections 3.1–3.3)
and explain how we integrate them in a system in Section 4.
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Figure 1. Overview of PERSEUS-HUB. The solid arrows indicate the system behaviors and the dashed
arrows indicate the user behaviors. In this example, User 1 uploads the dataset to analyze to the private
working space, and publishes it with marked patterns that he thinks are worth exploration. Other users
who are interested in the published graph (User 2 and User 3) may refer to the analysis by User 1 in the
public working space, or perform analysis in their private working space (e.g., User 2).

Figure 2. PERSEUS-HUB ‘user’ view: Node statistic distribution and correlation plots summarize the
key structural properties of the input graph, and provide the user with an initial point for exploration
and in-depth analysis. The red box annotation indicates the tab for uploading input graph files.

3.1. Module 1: Efficient Computation of Graph Statistics

Univariate and bivariate distributions of node statistics are crucial for graph analysis, and are
traditionally used for anomaly or spam detection in networks [35,41]. For example, the degree and
PageRank distributions are expected to follow a power law [42], while singular vectors exhibit the
“EigenSpokes” pattern [43] that can be used to explore the community structures.
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Building on these observations, PERSEUS-HUB computes both weighted and unweighted graph
statistics in a distributed manner and visualizes their distributions as an overview for further
investigation of the characteristics of an input graph. Specifically, the distributions computed
include: degree distribution, PageRank distribution, degree vs. PageRank distribution, top-10 singular
vectors, and clustering coefficient distribution. PERSEUS-HUB assumes the format of input file to be
<source, destination> for the unweighted graphs and <source, destination, weight> for the weighted
graphs. Users can easily upload the input file to PERSEUS-HUB by clicking the tab shown in the red
box of Figure 2. In this subsection, we explain how these node properties are computed by using the
Spark framework.

3.1.1. Degree Centralities and Degree Distribution

For a node in a graph G (V , E), its degree centrality is defined as the number of its neighbors.
The degree centrality of an arbitrary node v ∈ V in a weighted undirected graph is the sum of the
weights of edges euv, u ∈ V , u 6= v incident upon this node. For an unweighted undirected graph, the
weight of each edge is 1. For weighted directed graphs, the node degree centralities can be distinguished
to in-degree, out-degree, and total degree. In-degree of a node v is defined as the total weights of edges
euv starting from some other node u pointing to v. Similarly, the out-degree of a node v is defined as
the total weights of edges evu starting from this node v pointing to some other node u. The total degree
of a node is defined as the sum of in-degree and out-degree.

In Spark, degree centralities can be efficiently computed by ‘grouping’ the edges of the input graph
data that are in the form of source-destination pairs, < vsrc, vdst >, as key-value pairs. The in-degree
(out-degree) centrality of an arbitrary node in the graph can be computed by grouping edges with the
same destination (source) and then summing up weights of each edge. The total degree centrality can
be similarly computed after a union operation being performed on every edge and its reverse.

The degree distribution, defined as the probability distribution of degree over all the nodes, can be
obtained by calculating its histogram (i.e., the number of nodes per degree centrality).

3.1.2. PageRank Centralities and PageRank Distribution

PageRank is a way of measuring the importance of website pages introduced by Page et al. [44].
Without loss of generality, we present the definition of PageRank for a weighted graph G (V , E),
with weighted adjacency matrix W. To incorporate the weights of each edge into the calculation of
PageRank, the weighted transition probability is normalized so that the total probability of leaving
node u is one. Thus, the weighted PageRank of an arbitrary node in a graph can be defined as:

prw(v) =
1− d

N
+ d ∑

u∈M(v)

wuv · prw(u)
Cu︸ ︷︷ ︸

wpru→v :contribution term

, (1)

where u, v ∈ V are nodes in graph; prw(v) denotes the weighted PageRank for node v; N represents
the total number of nodes in G; d is the damping factor; M(v) ⊆ V are nodes pointing to v; wuv

denotes the weight of the edge from u to v; Cu = ∑k wuk is the normalizing constant of node u.
The contribution term, wpru→v, denotes the weighted PageRank (wpr) that node u contributes to node v.
The unweighted graphs can be seen as a special case with wuv = 1, ∀u, v ∈ V ; Cu = L(u), ∀u ∈ V ,
where L(u) is the number of edges of node u. Therefore, Equation (1) simplifies to:

pr(v) =
1− d

N
+ d ∑

u∈M(v)

pr(u)
L(u)

. (2)

Algorithm 1 illustrates the Spark procedure for computing the weighted PageRank distribution.
The input graph is an edge list organized into Resilient Distributed Dataset (RDD) structure in
PYSPARK. To compute the PageRank of the nodes, we employ the power method, which relies on
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fast spare matrix-vector multiplication. To parallelize the computation of weighted PageRank in
Spark, each iteration of the power method can be divided into two parts: (1) computation of the
weighted PageRank contribution of node u to every other node k, k ∈ V in graph G through edge euk;
(2) calculation of the total weighted PageRank of node v by summing up the weighted transition
probability from every other node u ∈ V , u 6= v. The correction term 1−d

N is added last. The first step
can be mapped for every node in the graph; the second step can also be computed in parallel given
the result of the first step. The PageRank distribution is attained by computing its histogram after
grouping the PageRank value into a number of bins (the default setting is 1000).

Algorithm 1 Weighted PageRank (wpr).

Input: weighted edges RDD D: <srcID, (dstID, w)>, total number of iteration: iter_max, dampling factor: d
Output: Weighted PageRank RDD, wpr: <nodeID, wpr>

nodeID = {srcID} ∪ {dstID} // Set of all node IDs
N = max(nodeID) // Getting total number of nodes in the graph
wpr =<nodeID, 1

N > // Initializing wpr for each node as 1
N

while iter ≤ iter_max do
temp = group D by srcID (key), // Joining edges with wpr of srcID

join with wpr by srcID (key) // temp: <srcID, ([<dstID1w1>, . . . ,<dstIDk, wk>], wprsrcID)>
contribs = map temp to wpru→v in Equation (1) // calculating contribution term for each node
wpr = reduce contribs by key, // adding up all contribution term, wpru→v

multiply the sum by d and add (1-d)/N // update weighted PageRank for each node wpr
iter ++

end while
return wpr

3.1.3. Clustering Coefficient

In PERSEUS-HUB, we use the local clustering coefficient to measure the extent to which nodes in
the input graph tend to cluster together. This measure is widely used in social and other sciences to
better understand the connectivity properties of a graph. For example, in connectomics, nodes with
high clustering coefficients indicate neurons that have dense connections, which represent areas of the
brain that are functionally correlated; in social science, nodes with high clustering coefficients could be
an indicator of tightly connected communities that are anomalous.

The clustering coefficient for each node (i.e., Local Clustering Coefficient) in an undirected graph is
defined as:

LCC(v) =
2 · |{euk ∈ E|u, k ∈ Γ(v)}|

dv · (dv − 1)
, (3)

where Γ(v) is the neighborhood of node v: Γ(v) = {u ∈ V|euv ∈ E}, and dv is the number of nodes
in the neighborhood of node v. To measure the average clustering coefficient of an undirected graph,
the concept of average clustering coefficient is introduced:

ACC(G) = ∑
v∈V

LCC(v)
N

. (4)

The Spark procedure, CCFinder [45], for computing the local clustering coefficient is given in
Algorithm 2. Our implementation of local clustering coefficient uses the FONL (Filtered Ordered
Neighbor List) data structure [45]. FONL is designed to increase the computation speed by efficiently
storing necessary data and exploiting the parallel computing framework. Given < srcID, dstID > pairs,
the input graph data is organized into < key, value > form: < vi, (dvi , [vi1, vi2, · · · vim]) >, where vi is
the ID of node i; ∀ 1 ≤ k ≤ m, vik ∈ Γ(vi) are neighbors of vi with a larger degree (dvik > dvi ) or having
a greater node ID if their degrees are the same (vik > vi and dvik = dvi ). Moreover, vik are arranged
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by their degree in ascending order, i.e., dvi1 ≤ dvi2 ≤ . . . ≤ dvik . The degree of vi, dvi ,is appended
after vi and will be used to calculate the denominator in Equation (3). For each node in the graph,
a < key, value > pair with the above form is generated.

In Equation (3), the term |{euk ∈ E|u, k ∈ Γ(v)}| denotes the number of edges linking neighbors
of node v. Since every such edge indicates the existence of a triangle involving v, solving for
|{euk ∈ E|u, k ∈ Γ(v)}| is equivalent to counting the number of triangles in the neighborhood of
v. Thus, to find triangles in a graph, we check whether the neighbors of vi, i.e., vik have matching
neighbors or not. Therefore, for each vik, the FONL structure is organized into a candidate list of
the form < vik, (vi, [vi(k+1), . . . , vim]) >, in which only nodes with a higher or equal degree than
vik are kept, i.e., ∀ vil ∈ {vi(k+1), . . . , vim}, dvik ≤ dvil . Next, a join operation is performed on FONL
and the above candidate list. Taking the intersection of [vi(k+1), . . . , vim] of vik’s candidate list and
[v(ik)1, v(ik)2, · · · v(ik)m′ ] of vik’s FONL structure, we return the matching node ID together with their
common neighbors, vi and vik, identify the triangles in the graph. Due to the ascending ordering of
degrees, every triangle in the graph can only be counted once, and thus counting duplicates is avoided.
Now, the local clustering coefficient for each node vi can be computed using the number of triangles it
involves in and its degree, dvi .

As in the case of PageRank, the distribution of local clustering coefficients can also be obtained by
computing its histogram after appropriate binning.

Algorithm 2 CCFinder [45].
Input: edge_list: <srdID, dstID>
Output: Local Clustering Coefficient for every node, lccRdd: <nodeID, lcc>
nodeID = {srcID} ∪ {dstID}
N = max(nodeID) // Getting the total number of nodes in the graph
edge_list = <srdID, dstID> ∪ <dstID, srdID> // Getting reversed edges
edge_list = group edge_list by nodeID (key), // Appending nbrDeg to <nodeID, [(nbrIDs)]>

append neighbor degree after nbrID // <nodeID, [(nbrID, nbrDeg)]>
fonlRdd = CREATEFONL(edge_list) // Creating FONL Structure
save fonlRdd both in memory and on disk
candRdd = map fonlRdd to <nbrID, (nodeID, [(nbrIDs)])> // Creating Candidate List

∀ nbrIDi ∈ [(nbrIDs)], nbrDegi ≥ nbrDeg
triRdd = join candRdd with fonlRdd by nodeID, // Counting the number of triangles

compute triCounts = | fonlRdd.[(nbrIDs)] ∩ candRdd.[(nbrIDs)] |
map to the form <nodeID, triCounts> and reduce by nodeID

lccRdd = map triRdd to get local clustering coefficient using Equation (3) // Computing lccRdd
return lccRdd

function CREATEFONL(edge_list)
compute nodeDeg, ∀ nodeID ∈ edge_list
[(nbrIDs)] = sort {(nbrID,nbrDeg) ∈ edge_list : (nbrDeg > nodeDeg) or

(nbrID > nodeID and nbrDeg = nodeDeg)} // Filtering and sorting edge_list
by (nbrDeg and nbrID) in ascending order

return <nodeID, nodeDeg, [(nbrIDs)]>
end function

3.1.4. Execution Time Analysis

In this subsection, we provide runtime analysis of the graph statistics module. The AWS
EMR-Spark cluster that PERSEUS-HUB runs on has one master node and two slave nodes, each of
which is deployed on the general purpose m4.large instance (two CPU cores and 8 GB memory).
We also measure the average response time by performing 1000 queries in the frontend. Specifically,
we consider the two graphs used in Section 5, the size of which is briefly described in Table 2.
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Table 2. Execution time: computation of graph statistics.

Dataset # Nodes # Edges Statistics Computation (s) Average Response (ms)

cit-HepTh 27,770 352,807 790.014 7.320
Twitter_retweet 35,366 78,058 711.592 8.311

From Table 2, we find that the time for computing these two real-world graphs takes about 10 min
on three machines. Using additional machines could help reduce the computation time further,
and support the analysis of larger graphs at a relatively short time. We also note that the average
response time in both cases is very short and less than 0.1 s, which, according to Nielsen [24] gives the
feeling of instantaneous response.

3.2. Module 2: Multi-View, Ensemble Anomaly Detection

The second (offline) module of PERSEUS-HUB consists of a system-based detection of anomalous
nodes in the input network, which can guide the exploration process by highlighting ‘abnormal’
node behaviors. Discovery and evaluation of outliers from a multi-dimensional set of points is a
difficult task. Moreover, different anomaly detection algorithms calculate outlier scores under different
criteria (e.g., distance from a trend-line [21] vs. density differences from surrounding points [37] vs.
latent node properties), and thus their scores are vastly different. To benefit from various methods
and detect outliers with higher confidence, PERSEUS-HUB uses a multi-view, ensemble approach:
The approach is multi-view because outlier detection methods are applied on all the distribution
plots, which capture different aspects and normality patterns of the input data. Moreover, it is also
considered as an ensemble because it normalizes multi-dimensional outlier scores from different
anomaly detection methods to form a unified combined score for each multi-dimensional point.

3.2.1. Multi-View, Ensemble Anomaly Detection: Approach

Given a set of plots that portray the relationship between different attributes of
a multi-dimensional dataset (e.g., the distribution plots computed by the first module of PERSEUS-HUB),
we apply an anomaly detection method to calculate the anomalousness score for each point (or node).
PERSEUS-HUB leverages two anomaly detection methods (an angle- and a density-based). Specifically,
we use:

• ABOD (Angle Based Outlier Detection [12]), an anomaly detection method that assesses the
variance in the angles between the different vectors of a point to other points. ABOD is particularly
effective for high-dimensional data since effects from the “curse of dimensionality” are alleviated
compared to purely distance-based approaches.

• G-FADD (Grid-Based Fast Outlier Detection algorithm given Duplicates [38]), a density-based
anomaly detection method that is remarkably fast in determining outliers from multi-dimensional
points with a large number of (near-) duplicates (i.e., points that have almost the same coordinates).
Specifically, by considering identical coordinates in an n-dimensional space as a super node with
their duplicate count information, G-FADD can compute anomalousness scores much faster
than other density-based approaches such as LOF [37] (Local Outlier Factor), which do not treat
duplicate nodes specially, and are inefficient at handling real datasets with many near-duplicate
points. The time complexity of LOF is near-quadratic with respect to the number of duplicates,
whereas for G-FADD it is near-linear.

Although we used two anomaly detection methods, the methodology that we describe below can
be applied to any number of approaches. Since the anomaly detection module is offline, its runtime
does not burden the user significantly. Nevertheless, choosing fast methods that scale well with the
size of the input dataset is important when handling large graph datasets.
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Each method returns a list of real-valued anomalousness scores for all the nodes in each
distribution plot computed by Module 1. However, scores computed by different methods and
on different plots have widely varying scales, and combining them to get a uniform score is not
straightforward. In our implementation, we compare the anomalousness scores of different methods
by following the methodology in [46] and normalizing all the anomalousness scores into probabilistic
scores that represent the probability that node v in a certain plot is anomalous according to a certain
anomaly detection method. Such a probability can be calculated in the following way:

P(v) = max
(

0, er f
(

S(v)− µS

σS ·
√

2

))
, (5)

where S(v) is the anomalousness score of node v, er f is the error function, and µS and σS are the mean
and standard deviation of anomalousness score for the method within the plot of interest.

In our case, because we use ABOD where a high score for a node means a low probability of being
an outlier, before normalizing the ABOD scores, we first need to invert them so that a high score for a
node maps to a larger probability for being an outlier. To enhance the contrast between inliers and
outliers, we use logarithmic inversion:

Regloginv
S (v) = − log(S(v)/Smax), (6)

where S(v) is the original unreguralized ABOD score and Smax is the maximum ABOD score from
all the ABOD scores in a given distribution plot. The inversion of ABOD scores allows the proper
computation of probabilistic scores based on Equation (5).

At this point, for each method j and each node v in each plot pi, we have normalized the probability
score, which we can denote as Pj

pi (v). In our case, j = {ABOD, G-FADD} and pi ranges from p1 to p9:

• p1: Degree distribution plot,
• p2: Two-dimensional distribution (or correlation plot) of degree vs. PageRank,
• p3: PageRank distribution plot,
• p4: Clustering coefficient distribution plot,
• p5 to p9: Five pairwise singular vector (sv) plots—sv1 vs. sv2, sv3 vs. sv4, sv5 vs. sv6, sv7 vs. sv8

and sv9 vs. sv10, respectively (where svi is the ith singular vector of a graph’s adjacency
matrix). By default, the frontend shows the first four pairs of singular vectors. However,
when PERSEUS-HUB computes the combined anomalousness scores, all plots are considered.

To obtain a combined anomalousness score, we compute a weighted combination of the
normalized anomalousness scores from the various views (or distributions) of our data in the
following way:

P(v) =

9
∑

i=1
∑
j

wpi · P
j
pi (v)

9
∑

i=1
∑
j

wpi

, ∀ node v, (7)

where wpi is the contribution of plot pi to the total anomalousness score of each node. These weights
can be modified as desired by the user based on domain knowledge. For example, in neuroscience,
when studying connectomes of subjects with Alzheimer’s, a scientist may choose to set higher weight
for the clustering coefficient distribution plot (based on research that has shown that the clustering
coefficient is a discriminative feature for patients and control subjects [47]), and minimize the weight
for the PageRank distribution. For simplicity, we provide default values of equal contribution per data
aspect, where we consider four main aspects: degree, PageRank, clustering coefficient, and singular
vector (i.e., wpi = 1 for i ∈ {1, 2, 3, 4} and wpi =

1
5 for i ∈ {5, 6, 7, 8, 9}). Additionally, the weights
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can be further customized if we introduce a wj
pi notation so that different methods and plots can be

weighted differently.

3.2.2. Scalability

To improve the performance of calculating the anomalousness scores using ABOD, parallelization
was used. In particular, a separate process was used for the calculation of ABOD scores for each plot.
The runtime of G-FADD and combining anomalousness scores is negligible when compared to the
runtime of ABOD, and thus no further speedup was required.

To analyze the scalability of the two anomaly detection routines that are integrated in
PERSEUS-HUB, we varied the number of nodes (or points) from a few hundreds to one million,
and applied the methods of the PageRank vs. degree correlation plot. As seen from Figure 3,
the runtime of ABOD grows quadratically as a function of the number of nodes, whereas G-FADD
runs in near-linear time and is significantly faster even on datasets with millions of nodes. The
outlier detection analysis is offline, and the precomputed results are stored and used for interactive
visualization. For larger graphs, ABOD can be ‘disabled’ and G-FADD (in combination with other fast
approaches) can be used for multi-view anomaly detection.

(a) ABOD runtime (b) G-FADD runtime

Figure 3. Scalability of ABOD and G-FADD for varying graph size. x-axis: number of nodes;
y-axis: runtime in seconds.

3.3. Module 3: Frontend Visualization

The frontend visualization consists of two parts: (1) aggregated summarization and
(2) node-specific summarization. The former displays the linked statistics distributions, and the
latter provides users with three components to analyze the node statistics and local connectivity with
its neighbors.

3.3.1. Aggregated Summarization

Given a dataset, PERSEUS-HUB plots the distributions of the node-specific statistics (e.g., degree
vs. PageRank, pairwise singular vector plots) and tracks specific nodes through linking and brushing.
The layout of the ‘aggregated summarization’ is shown in Figure 4. In particular, the interactive
visualization consists of eight linked distribution plots, where each point in the distributions is
trackable: when the user clicks on it in one of the distributions, the corresponding point in other
statistics distributions will be highlighted as well. The distribution plots p1 to p4 (described in
Section 3.2.1) are aligned in the first row, and p5 to p8 in the second row. For p5 to p8, users can change
the axes of each of the four plots accordingly to portray the visualization they want.

Since the input graphs in PERSEUS-HUB may consist of thousands or millions of distinct nodes,
directly plotting distributions of node-wise graph statistics—using identical amount of points to the
number of nodes—is significantly memory-consuming and inefficient. To overcome such difficulties,
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in each distribution, PERSEUS-HUB reduces the amount of points required for plotting by dividing
the plot into a k× k grid (e.g., k = 1000 by default) and using the center to represent points falling in
each grid. To show the density of each grid, the number of points in each grid is marked with different
colors: each non-empty grid is initialized as blue and becomes closer to red with more nodes.

The distribution plots are created using Bokeh, a Python visualization library that allows
functionality such as linking, selecting, taping, and zooming. The Bokeh toolbar, which is illustrated in
Figure 5, is given at the top-right of each row of plots and supports the following interactions starting
from left to right:

Figure 4. Layout of the graphs displayed in the frontend. The plots in the first row are degree vs. count,
degree vs. PageRank, PageRank vs. PageRank count and ClusteringCoefficient vs. ClusteringCoefficient
count. The plots in the second row are singular vector (sv) relationships, specifically they are sv1 vs. sv2,
sv3 vs. sv4, sv5 vs. sv6, sv7 vs. sv8. Note that each node in the degree vs. PageRank plot is colored
according to the PageRank count value of each node, a high count is red and a low count is blue.
The red box annotations indicate the Bohek toolbar.

Figure 5. Bokeh Toolbar (the last two buttons at the rightmost end of the toolbar are just links for more
information about Bokeh and they don’t serve any interaction purpose).

• pan: When the pan tool is selected, the user can move the cloud of points in each distribution
plot by holding the left mouse button and moving the cursor in the direction they want to move
the graph.

• box-zoom: When the box-zoom tool is selected, the user can box-select a region in the distribution
plot they would like to zoom in.

• box-select: When the box-select tool is selected, the user can box-select and highlight a region
of points in the selected distribution plot. Since all plots are linked, the corresponding points in
the other plots are highlighted at the same time. This can be useful when a user wants to track
micro-clusters of points across different ‘views’ (or graph properties).
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• wheel-zoom: When the wheel-zoom tool is selected, the user can scroll over a given distribution
plot to zoom in or out.

• tap: When the tap tool is selected, the user can left click on a specific single point. This is useful
when the user wants to explore a single node (via the information console, egonet, or adjacency
matrix) instead of using the box-select tool.

• save: When the user clicks on the save button, the corresponding distribution plots are saved in
png format.

• reset: When the reset button is clicked, the distribution plots are re-positioned to their original
setup and the previously selected points are unselected.

3.3.2. Node-Specific Summarization

PERSEUS-HUB provides three components to explore a specific point in a distribution
(or correlation) plot: (1) an information console revealing the details of a collection of nodes that are
similar to the a user-selected node in terms of at least one statistic (e.g., similar degree); (2) a dynamic
egonet representation; and (3) an adjacency matrix centering a specific node. In addition, users who
are interested in system-detected anomalies can explore the corresponding nodes using the provided
anomaly detection methods.

Walk-through of a user interaction case. When a user selects a point in any of the plots, the point’s
coordinates are sent to the backend server through an Ajax request. In the backend, the database is
queried with the coordinates and attributes of the selected point and it returns at most 10 non-aggregate
nodes that match the selected aggregate node. For example, if the user selects the point, degree = 130
and PageRank = 0.00037250011576710077 in the PageRank vs. degree graph, then the database will be
queried so that it finds at most ten distinct nodes that have the same PageRank and degree values.
Once all that information is retrieved, the backend will respond back and display the results in the
information console as shown in Figure 6.

Figure 6. Layout of the information console.

For each retrieved node in the information console, the user has the option to display the egonet
and the adjacency matrix ( shown in Figure 7) of that node by clicking the appropriate button. Then, the
user can navigate to the egonet and adjacency matrix tabs to view their respective interactive graphs.
The egonet graph shows at most 10 other nodes adjacent to the selected node and all the connections
between them. The user also has the ability to expand the egonet by clicking on any desired node from
which they want to expand the network as well as deleting any desired node from the egonet. For
efficiency, when a user clicks on a node, it expands to a random set of ten neighbors. However, this
choice can be adjusted to better serve the exploration needs for different domains. The egonet (which
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is displayed using a force-directed layout) is interactive and can be re-positioned as desired by the
user in order to provide a better visualization.

(a) Egonet (b) Adjacency Matrix

Figure 7. Node-specific summarization: representation of the egonet and adjacency matrix of
a selected node.

To explore nodes detected as anomalies, users can click on the G-FADD, ABOD, and Combined
Anomaly Score buttons at the bottom of the screen to display the respective anomaly scores (Figure 8).
Once the button is clicked, the top ten most anomalous nodes from the input graph will be presented in
the table format ordered by their scores. Simultaneously, the top ten anomalous nodes are automatically
highlighted in all the distribution plots to give the user a sense of the most anomalous nodes in
their dataset (Figure 9). Node-specific interaction via egonet and adjacency matrix representation
is supported for the anomalous nodes as well (through the tab for anomaly detection, as shown
in Figure 8).

Figure 8. Layout of the anomaly scores table.
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Figure 9. Top ten anomalous nodes are highlighted in red.

4. PERSEUS-HUB: Web Application Integration

In order to combine the above visualization features into one cohesive user interface, we wrap
PERSEUS-HUB inside a web application interface, which is accessible universally within a browser.
The application backend is hosted on Amazon Web Service (AWS), consisting of an Apache Spark
cluster for processing user-uploaded raw datasets, an application architecture powered by an uWsgi
server running Django, a Nginx reverse proxy server for IP resolution and static file serving, and
a MySQL server for application data storage, while the frontend user interface is powered by the
Bootstrap 3 framework.

The data visualization process is as follows: first, the application lets users upload raw datasets
in the form of a text file from the upload page. The uploaded raw data is then passed to the master
node of Apache Spark cluster to compute the graph statistics. Due to the potentially long time needed,
the system is set to send the user an email when the processing is done, rather than providing an
unresponsive interface which requires the user to wait.

After the raw dataset is processed, the computed node-specific statistics is stored in the MySQL
table for dynamic querying. The dataset is then made available for viewing through a templated URL.
When the templated dataset webpage is loaded, the dataset’s respective data files are loaded to plot
statistics distributions with the Bokeh visualization library. One important goal of PERSEUS-HUB is
to create a multi-user environment for sharing and analyzing a variety of user data sourced from the
crowd. For this purpose, PERSEUS-HUB provides four user-related modules:

• Authentication module: The web application includes a user registration and authentication
module where new users can register and start processing and sharing their data immediately.
This module is also the foundation of some other user-controlled features, which are elaborated
on below.

• Exploration module: The dashboard page of the web application is filled with a collection of
recently added datasets. This data “feed” will be enhanced with suggestion algorithms in the
future for better personalization.

• Search module: When a user uploads her raw data, she is asked to enter a descriptive title for
them. This piece of metadata provides a simple indexing method for the users to either search for
a specific dataset or browse for datasets with a similar title.

• Bookmark module: The bookmark feature allows users to mark a specific node within a dataset
by clicking on the “star” button next to the statistics in the information console. This feature
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gives users a finer-grained choice to mark their interest, e.g., a specific point in social networking
datasets. Moreover, users can set a priority flag for their bookmarks, enabling better categorization
and recognition for the creator. For collective analysis, users can choose to share their bookmarks
publicly so that other analysts can incorporate these findings in their exploration process.
Screenshots of the bookmark button and bookmark creation are shown in Figure 10.

(a) Bookmark in information console
(b) Bookmark creation notification

Figure 10. Illustration of the bookmark functionality.

5. Case Study

PERSEUS-HUB can be used to analyze various graph patterns, and in this section, we run
PERSEUS-HUB on two real-world datasets from different domains to showcase how to analyze the
spike patterns that appear in singular vector distributions.

5.1. The Citation Network

The first dataset we use is the Arxiv Hep-Th (high energy physics theory) citation graph [48]
which contains 27,770 nodes and 352,807 edges. The frontend is shown in Figure 11. To analyze the
spike patterns in the singular vector relationship plots, we study the points that locate at the ends of
the spikes (extreme points). Specifically, we search for detailed information about the papers denoted
by these points under the physics category in Arxiv (https://arxiv.org). The points explored are shown
in Figure 12, and their detailed information is listed in Table 3.

Table 3. Detailed information of selected points in singular vector plots.

Color Paper ID Paper title

Red 9905111 “Large N Field Theories, String Theory and Gravity”
Cyan 0201253 “Supersymmetric Gauge Theories and the AdS/CFT Correspondence”

Orange 9710046 “Black Holes and Solitons in String Theory”
Green 0109162 “Quantum Field Theory on Noncommutative Spaces”
Purple 0102085 “A Review on Tachyon Condensation in Open String Field Theories”

Dark green 0302030 “Brane World Dynamics and Conformal Bulk Fields”
Yellow 0101126 ”M(atrix) Theory: Matrix Quantum Mechanics as a Fundamental Theory”

Blue 0111208 “Noncommutative Field Theories and (Super)String Field Theories”
Light brown 211178 “Supersymmetric D3 brane and N=4 SYM actions in plane wave backgrounds”

Brown 9911022 “Tests of M-Theory from N=2 Seiberg-Witten Theory”
Light pink 0104127 “Thermodynamic properties of the quantum vacuum”

https://arxiv.org
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Figure 11. Illustration of running PERSEUS-HUB on the cit-HepTh (citation in high energy physics
theory) graph. To explore the spike patterns in the singular vector plots, extreme points on the spikes
are selected and explored. Only one is shown in this case to obtain the node ID.

Figure 12. Illustration of points explored, marked with different colors.

Although singular vectors are known to capture structural information in graphs, there is no
solid theory about what exact information is encoded and how to use it. By using the correspondence
of extreme points in different singular vector relationships in PERSEUS-HUB, we find correlation
between the paper topics and the structural information in the citation graph. Specifically, we make the
following empirical observation: (1) in the citation graph, papers that are rarely cited or citing others
are located at the “centers” of all singular vector relationship plots; (2) the similarity and difference
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between topics can be captured in different singular vector relationships; and (3) different spikes reflect
different topics captured by the structural information in the citation graph.

To support our observation (1), we explored the point marked in light pink and found several
papers that have only one total degree (degree distribution plot) in the dataset. In addition, according
to the clustering coefficient distribution plot, the low value indicates that the corresponding papers are
unlikely to be clustered with others, which demonstrates the fact that these papers are rarely cited by
or citing other papers in this dataset. To support (2), we compare the paper titles of several extreme
points. For example, the point marked in green and point marked in purple are located closely in the
3rd vs. 4th singular vector plot, but far away in the 5th vs. 6th singular vector plot. From the titles, we
find that both green and purple discuss the topic of “field theory”, but, more specifically, one is about
“quantum field theory” and the other is about “string field theory”. This explains why they are similar
in terms of some singular vectors but different in terms of the others. Similarly, we observe this from
the points marked in yellow and green. This similarity and difference in topic captured by the graph
connectivity also demonstrates (3), since most papers discuss different specific areas in high energy
physics theory. Nearby extreme points, such as the blue and green points in sv3 vs. sv4, show that
papers about the same topic are likely to cite each other and share the same statistics.

5.2. The Social Network

The second dataset we use is a Twitter dataset, which contains 35,366 accounts and 78,058 retweet
records, ranging from October 2015 to January 2016. Similar to the analysis in Section 5.1, we illustrate
the frontend of PERSEUS-HUB in Figure 13 with patterns of interest marked in red ellipses.

Figure 13. Analysis of Twitter retweet network: suspicious patterns are marked in red ellipses.

In Figure 13, we manually tune the x- and y-axes of four singular vector relationship plots,
which exhibit clear “EigenSpokes” patterns [43]. The spokes, or the straight lines that are aligned with
the axes, represent the existence of groups of tightly connected nodes, and, in this case, accounts that
often retweet or are being retweeted by other accounts. To further explore these suspicious groups of
users (marked in red ellipses), we investigate their detailed screen names and their behaviors in Twitter.
We find there are accounts that post tremendous amounts of advertising tweets such as “bmstores”
(B&M online store), “@ProtecDirect” (UK supplier of personal protective equipment), “@CartridgeSave”
(printer supplies) and so forth. On the other hand, there are accounts which mainly retweet those
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ads such as “@POY_UK” (product of the year) and “@harrisonsdirect” (product direct delivery). This
finding explains why there are accounts with frequent retweet behaviors: Online sales are always
trying to promote their products through either their official accounts (e.g., “@bmstores”) or proxies
(e.g., “@POY_UK”). Similarly, we can run PERSEUS-HUB to detect bots in Twitter that spread rumors
or fake news by evaluating the singular vector plots.

In a nutshell, we illustrate that PERSEUS-HUB provides analysts a way to distinguish normal users
from bots or spam accounts, which further demonstrates the usage of PERSEUS-HUB in the domain of
social networks.

6. Conclusions

In this paper, we introduce PERSEUS-HUB, an efficient large-scale graph mining tool with
interactive visualization to support preliminary analysis of graph data. PERSEUS-HUB adopts
a two-level summarization scheme that visualizes both aggregate and node-specific patterns. Our
system also enables collective analysis of data from multiple users, as well as machine-driven, ensemble,
multi-view outlier detection analysis that guides the data exploration process to anomalous patterns.
We believe that PERSEUS-HUB provides a new way to analyze large, complex graphs that could be
beneficial to users across various domains.

Most analysis performed in PERSEUS-HUB is based on the node-specific statistics of the input
graph; therefore, a natural direction to consider as future work is the integration of side node
information (e.g., node attributes). Another direction is to extend the anomaly detection functionality
with the integration of more detection algorithms and the support of additional frontend options for the
user (e.g., selection of weight contributions for various views to the ensemble scores). More importantly,
for domain-specific summarization, it would be beneficial to devise efficient computational methods
for ‘customized’ summarization of graph data by leveraging the domain knowledge, i.e., automatic
selection of the ‘summarized’ statistics to be shown to the user, instead of providing a set of predefined
statistics as in PERSEUS-HUB. At this stage, we consider our work to be the first step towards
a ‘collaborative’ tool that supports large-scale graph analysis.
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