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Abstract—Given the soaring amount of data being generated
daily, graph mining tasks are becoming increasingly challenging,
leading to tremendous demand for summarization techniques.
Feature selection is a representative approach that simplifies
a dataset by choosing features that are relevant to a specific
task, such as classification, prediction, and anomaly detection.
Although it can be viewed as a way to summarize a graph in
terms of a few features, it is not well-defined for exploratory
analysis, and it operates on a set of observations jointly rather
than conditionally (i.e., feature selection from many graphs vs.
selection for an input graph conditioned on other graphs).

In this work, we introduce EAGLE (Exploratory Analysis of
Graphs with domain knowLEdge), a novel method that creates in-
terpretable, feature-based, and domain-specific graph summaries
in a fully automatic way. That is, the same graph in different
domains—e.g., social science and neuroscience—will be described
via different EAGLE summaries, which automatically leverage the
domain knowledge and expectations. We propose an optimization
formulation that seeks to find an interpretable summary with
the most representative features for the input graph so that
it is: diverse, concise, domain-specific, and efficient. Extensive
experiments on synthetic and real-world datasets with up to
∼ 1M edges and ∼ 400 features demonstrate the effectiveness
and efficiency of EAGLE and its benefits over existing methods.
We also show how our method can be applied to various graph
mining tasks, such as classification and exploratory analysis.

I. INTRODUCTION

Technological advances have led to a tremendous increase
in the collected data at a finer granularity than ever, including
scientific data from different domains that has the potential to
lead to new knowledge. Graphs are prevalent in scientific and
other data, as they naturally encode various phenomena like
structural or functional brain connectivity in neuroscience [8],
compounds in chemistry, protein interactions in biology, symp-
tom relations in healthcare [23], behavioral patterns in social
sciences, mobility patterns in transportation engineering, and
more. However, the size and complexity of these graphs
call for statistical and programmatic tools that can harness
them. Motivated by this need, we focus on the problem of
summarizing graph data in a scalable and domain-aware way,
enabling the extraction of intelligible information.

The typical first step of exploring a new graph dataset (e.g.,
brain connectome; social, technological, or communication
network) often involves plotting, fitting, seeking for outliers in,
and summarizing the distributions of various graph invariants
(or features) such as degree, PageRank, radius, local clustering
coefficient, eigenvectors, node attributes, and many more.
Univariate and bivariate distributions are often used in graph
mining to discover anomalous patterns at the node or graph

Fig. 1: Overview of EAGLE: Given an input graph g and a set
of K baseline graphs Gi that encode the domain knowledge, we
seek to find a domain-specific, feature-based summary of g that
is diverse, concise, and interpretable. The summary consists of
univariate feature distributions (e.g., degree, PageRank).

level ([3], [16], [14]). However, the features to be explored are
usually determined in a feature engineering approach, which
heavily depends on the analyst’s knowledge, intuition, and
prior studies. For example, in connectomics, typical features
for comparing healthy and non-healthy populations include the
average degree, clustering coefficient, path length [6], [8].

Moreover, the features selected in existing techniques are
determined by the choice of evaluation metrics and are task-
dependent. For example, highly correlated features are more
likely to be chosen in clustering; independent features are more
likely to be chosen for classification. Recent developments
in representation learning study latent feature representations
via optimization frameworks. Although they are promising
and remove the ad-hoc property of feature engineering, they
return latent representations which are hard to interpret and
are mostly suited for specific tasks such as link prediction and
multi-label classification. Therefore, there is need for a general
summarization or feature selection technique for exploring
graph properties independent of specific tasks.
Proposed Approach: Motivated by these observations, our
proposed method, EAGLE, aims to model the exploratory
analysis of graph data as a mathematically rigorous feature
selection problem which is automatically guided by and, thus,
conditioned on the domain of the data. Throughout the paper,
features is used to refer to a combination of graph invariants, or
structural node attributes (discrete or continuous—e.g., degree,
PageRank, clustering coefficient), and categorical or numerical
node attributes. Each feature is represented by its (univariate)
distribution over the nodes in the graph. Specifically, EAGLE



seeks to summarize an input graph g with the aid of a small
set of features by leveraging the information encoded in a
set of “baseline” graphs Gi for i ∈ {1, 2, . . . , k}, which, in
combination with their invariant distributions, represent the
domain knowledge.

For instance in Fig. 1, let the input graph be a new social
network (g) and the domain contain well-established social
networks (Gi). A ‘surprising’ summary of g would consist
of a small set of features including the degree distribution
(the leftmost distribution in the central box) which follows
the Gaussian distribution, while in the domain a power-law
distribution is expected. Our approach can be seen either as
feature-based graph summarization, or domain-specific feature
selection that seeks to choose some features for an input
graph conditioned on the features of the baseline graphs.
This conditional property sets our work apart from traditional
feature selection methods that jointly operate on a set of
observations (e.g., select features from multiple graphs).

We formalize the problem as an optimization model
that outputs an interpretable, feature-based summary satisfy-
ing four important properties: diversity, conciseness, domain
specificity, and efficiency. Application-wise, we consider the
cases where the number of features in the summary (i) can be
defined via prior knowledge or domain expertise, or (ii) need
to be defined automatically. Our main contributions are:
• Novel Formulation: We propose a new mathematical formu-
lation of graph exploration as a conditional feature selection
problem over structural or other node attributes. The goal of
our proposed constrained optimization framework is to find
a diverse, succinct, domain-specific summary for the input
graph, which is also interpretable.
• Scalable Algorithms: We propose EAGLE-FIX and EAGLE-
FLEX, two efficient methods for obtaining the desired sum-
maries. To speed up our methods, we carefully handle the
correlations between graph features by systematically investi-
gating their affinities in a data-driven way.
• Experiments: We compare EAGLE with baseline approaches
on a variety of real-world datasets (including social networks,
citation networks, and human connectomes) and show that it
satisfies all the desired properties and it is scalable. Although
our approach is task-independent, we show that it can be
applied to traditional graph mining tasks, such as classification.

For reproducibility, the source code is available at https:
//github.com/DerekDiJin/Domain_Knowledge.

II. RELATED WORK

Our work is related to several research directions:
Feature selection. The process of feature selection con-

sists of two parts: a search technique for proposing new
feature subsets, and a measure for evaluating these different
feature subsets. Search techniques vary from exhaustive [12]
to improved ones, such as greedy hill climbing. Evaluation
metrics are divided into three categories: wrappers (which
use predictive models to score feature subsets, e.g., [19]),
filters (which use measures, such as pointwise mutual informa-
tion [27]), and embedded methods (which perform selection

as part of the model construction process [4]). Our proposed
method, EAGLE, is the first approach searching for features
greedily based on the domain knowledge and expectations and
specifically targeting the graph setting. Moreover, while the
above methods select features by jointly learning from all the
available observations, our method performs a ‘customized’
feature selection for a given graph conditioned on observations
from a set of baseline graphs. Though EAGLE is used for
summarizing a dataset with desired properties and there is no
particular task guiding its evaluation, we showcase how to
adapt it for task-dependent evaluation too.

Pattern mining and Summaries. Mining static graphs
often involves analyzing the distributions of specific graph
invariants (e.g., skewed degree distribution [9] in numerous
settings, small-worldness in connectomics [6], [8]), and speed-
ing up their computations (e.g., betweenness centrality [5]).
Moreover, systems [3], [16] have been proposed for anomaly
detection via analyzing specific distributions of graph invari-
ants, and spam detection on bivariate distributions. These
methods focus on modeling manually-chosen distributions of
invariants and potentially finding outliers in them, while our
work aims to automatically detect the features that summarize
a given graph depending on its domain. Moreover, we assume
that fast methods are used prior to applying EAGLE in order to
obtain the distributions of various node invariants. Although
EAGLE finds feature-based summaries for an input graph, our
work differs significantly from graph summarization [18], [17],
which typically seeks to find a compact representation of a
network with fewer nodes/links.

Similarity/Distance and Interestingness measures. An
excellent review of existing distance/similarity measures for
distributions is given in [7]. Attempts to define the interest-
ingness of a plot or distribution by studying its geometric
properties [11] include: SCAGNOSTICS [26], which ranks and
guides the interactive exploration of bivariate distributions,
and motif-based interestingness measures for local patterns in
scatterplots [21]. However, unlike our work, these methods are
unaware of the domain and introduce generic measures that
define the ‘interestingness’ of each plot independently.

III. PROPOSED METHOD

Motivated by the large amounts of graph data and the preva-
lent need for exploratory analysis in various areas (e.g., neuro-
science, social science), we focus on generating interpretable
graph summaries by leveraging the domain knowledge:

DEFINITION 1. [Domain Knowledge] We refer to the
expected patterns (or laws) for the distributions of node
invariants or other attributes in a specific area as the domain
knowledge.

Examples of graph invariants include global structural statis-
tics such as the degree and PageRank; local structural statis-
tics such as the egonet size, interactions to neighbors, and
properties revealed by different algorithms such as community
detection. In social science, examples of categorical and nu-
merical attributes are the gender and age of a user, respectively.



Our assumption is that the domain expectations are implicitly
encoded in a set of baseline graphs which belong to that
domain. For example, in social networks many distributions
of structural attributes (e.g., degree variants, PageRank) are
expected to follow a power law [9], while in functional con-
nectomes that are produced via neuroimaging techniques more
uniform distributions are expected. Based on this definition,
we state the problem that we tackle as follows:

PROBLEM. [Exploratory Analysis of Graph Data using
Domain Knowledge] Given the node features of a plain or
attributed input graph g and a set G of baseline graphs Gi,
i = 1, . . . ,K, we seek to find a domain-specific summary
consisting of a small set of representative and interpretable
features in an efficient way.

If g is attributed, the features consist of invariants and node
attributes. Otherwise, the features include only node invariants.
Our main idea is to formulate the exploratory analysis of
graphs as an optimization model that will produce as an output
a feature-based summary with four desired properties:
• P1. High Diversity / Coverage. The summary is required
to ‘cover’ the information or patterns or laws encoded in the
baseline graphs: the features in the summary should provide
diverse aspects of the domain knowledge. We measure diver-
sity between the features through the concept of “similarity”,
so the features in the summary should have trivial dependence.
• P2. Conciseness. Although diversity is crucial for good
summaries, it connives the “greed” to select features: the
most diverse summary should contain many features. To
avoid duplication and verbosity, conciseness indicates that the
number of features in the summary should be small.
• P3. Domain-specificity. Based on the information of the
baseline graphs G, the summary of g should be related or
contrasted to the features of the baseline graphs. For example,
if a ‘contrasted’ summary is required and all the baselines
follow a power law degree distribution (e.g., social networks)
while g does not, the degree distribution should be included in
the summary. However, a ‘contrasted’ summary in a different
domain (e.g., neuroscience) would include different features.
• P4. Efficiency. Given the soaring amount of data being
generated daily, the computation of the summary must be
efficient and scale to large amounts of data.

Moreover, an informal desired property is that the selected
features are interpretable and easy-to-understand. To that end,
unlike network embedding or factorization-based methods, we
seek summaries that do not rely on latent features. Next we
introduce our proposed optimization framework. For reference,
we list the major symbols in Table I.
A. Proposed Formulation

We propose to model the Exploratory Analysis of Graph
Data problem as an optimization problem that encodes the
above-mentioned desired properties and selects the features to
add in the summary such that:

argmin
f
λ1 f

TSFf︸ ︷︷ ︸
1st term

+λ2 ‖f‖0︸︷︷︸
2nd term

+λ3 · φ(g,G1, G2, . . . , GK)︸ ︷︷ ︸
3rd term

(1)

TABLE I: Table of symbols

Symbol Definition
G a collection of baseline graphs, G = {G1, G2, . . . , GK}
g input graph
K total number of baseline graphs
F size of feature space
B number of buckets in a distribution
λ1,2,3 regularization parameters
f F × 1 indicator vector for selected features, f ∈ {0, 1}F
SF F × F pairwise feature relevance matrix for the baseline graphs G
SFi F × F pairwise feature relevance matrix for baseline graph Gi

w K × 1 weight vector for the baseline graphs in G,
∑K

i wi = 1
h F × 1 vector denoting similarity / distance between

equivalent marginal distributions (e.g., degree) of g and G
s(, ), d(, ) similarity and distance between two objects o1 and o2, resp.
φ(·) coupling function of the input graph g and the baseline graphs G

where f ∈ {0, 1}F is the vector indicating the selected fea-
tures; SF is the aggregated matrix that represents the pairwise
feature relevance in the domain of interest, as encoded in the
baseline graphs G; ‖f‖0 is the l0-norm of the indicator feature
vector; φ() is a function that couples the input graph g and
the baseline graphs, thus grounding the summary to domain;
and λ1, λ2, λ3 are regularization parameters which are set so
that the three terms are comparable (cf. Sec. IV-A).

Intuitively, the first quadratic term, fTSFf , forces the
selected features to be diverse. It uses the baseline graphs to
establish the ‘norms’ in the domain of interest and uses them
to capture the relevance between all pairs of graph invariants.
Specifically, SF represents the aggregate of the ‘correlation’ or
relevance between all F features over the baseline graphs G,
while the quadratic term evaluates the sum of relevance scores
of selected features. The regularization parameter λ1 is set to
a positive number (discussed later). Unlike existing work, this
term quantifies the relevance between different graph invariants
(e.g., PageRank and local clustering coefficient) in the domain
by harnessing the information in the baseline graphs.

The second term, ‖f‖0, which is multiplied by a positive
regularization parameter λ2, requires that the summary is
concise, i.e., it consists of a few features. Although, ideally,
the l0-norm encodes this requirement, we will later relax this
constraint to the l2-norm which is mathematically tractable.

The last term, φ(g,G1, . . . , Gk), is crucial because it
couples the input graph g and the domain knowledge. It can
be interpreted as the term that forces the features that will be
selected for the summary to come as close (or far) as possible
to those of the baseline graphs. That way, it can be tuned
to provide an ‘ordinary/expected’ summary or a ‘surprising’
summary. This is useful when an analyst who knows the
information that is being captured in the baseline graphs
(e.g., connectomes of subjects with depression) wants to see a
holistic overview of the feature-based similarities and possible
differences of a newly obtained graph (e.g., connectome of a
new subject). When φ() is a positive, increasing function of
f , we have the so-called “0 pit” problem of Equation (1):

DEFINITION 2. [The 0-pit problem] When the three terms of
Equation (1) are positive, the solution is 0F×1 irrespectively
of the input and baseline node invariants, i.e., the objective
function falls into a “pit” with optimal value 0.

To handle this problem, we add constraints to our optimiza-



tion problem. We elaborate more on the design choices of this
term and the additional constraints in Section III-C.

The efficiency of computing the summary comes from our
proposed framework, which we discuss in Section IV. The
additional (informal) requirement for interpretability follows
from our feature representation in f . As opposed to latent
representations that are hard to interpret, in our work the
selected features correspond to node invariants (e.g., degree,
PageRank) or node attributes, which depend on the domain.
Throughout our formulation, we assume that the graph fea-
tures are represented by their PDFs (Probability Density
Function) and adapt appropriate measures to quantify their
relevance/dissimilarities.

B. Proposed Model for Feature Diversity

As we mentioned above, the first term in our proposed opti-
mization function enforces diversity in the selected features so
that they are not correlated. In this subsection we discuss how
we design SF in order to capture the ‘correlation’ between
the node invariants per baseline graph. Assuming that only
the PDFs of the node invariants are provided, computing the
correlation between the corresponding invariants is not feasible
(more information per node would be needed). Thus, we use
feature relevance or similarity between different invariants as
a surrogate correlation model.

In general, the features (node invariants) that are considered
can be: discrete (e.g., degree distribution) or continuous (e.g.,
PageRank distribution). If we view each PDF i as a vector of
length li, it can be seen that different invariants are represented
by distribution vectors of different lengths, which leads to
two main challenges: (i) What is the right length for each
distribution vector, or, put differently, what is the proper size
of buckets to be used in different node invariant distributions?
and (ii) How can we compute the relevance between two PDFs
of different lengths? We address these two questions next.
(i) A general feature representation model. In order to
compute the relevance between the features in the baseline
graphs, we first need to define the feature model. As we
mentioned, we view each feature i as the PDF of the cor-
responding invariant, which can be represented as a vector of
length li or, equivalently, li ‘buckets’. If the PDF is organized
in a large number of buckets, the histogram “looks” uniform,
while a small number of buckets results in information loss
by aggregating many original values into one bucket.

Visualizing the feature distributions involves selecting the
number of buckets li. For example, for a degree distribution,
the number of buckets is equal to the number of unique node
degrees, while for a PageRank distribution the number of
buckets depends on the analyst and the data at hand. As
we see in Fig. 2, the number of buckets is critical when
computing the relevance between two features via their PDFs,
as they can lead to different ‘shapes’ of distributions, and help
with or prevent the detection of patterns (e.g., spikes). Fig. 2
indicates that a large number of buckets helps show the pattern
of discrete PDFs such as the power-law of the out-degree
distribution with 10−4 range in Fig. 2a, yet a small number

of buckets fails to reflect the actual pattern and may miss
the spikes that often indicate anomalies. On the contrary, for
continuous PDFs, many buckets blur the patterns as the values
in the distribution may differ slightly, while fewer buckets may
address this problem. This is illustrated through the “uniform”
distribution with unique bucketing in Fig. 2b.

We propose to find proper bucket sizing for any (discrete
or continuous) PDF by adapting Scott’s reference rule [20]:

Bucket size = 3.5 · δ̂/n1/3 (2)

where δ̂ is the sample standard deviation and n is the
number of elements in the distribution. The distribution plots
labeled “Scott” in Fig. 2 illustrate the effectiveness of Scott’s
rule by capturing not only the pattern, but also existing
spikes. Scott’s rule generates a flexible number of buckets for
different PDFs, and it applies to both big and small graphs.
There are several variants such as Sturges’ formula [25] and
Freedman–Diaconis’ rule [10], all apply to different settings.
For generality, we integrate all these rules including the fixed
sizing in the proposed framework and use Scott’s rule to
conduct computation and experiments.
(ii) A surrogate feature correlation model. Assuming that
only the PDFs of the node invariants are provided, computing
the correlation between the corresponding invariants is not fea-
sible (more information per node would be needed). Thus, we
use feature relevance or similarity between different invariants
as a surrogate correlation model. Other traditional distance-
based measures [7] can be applied when two distribution
vectors are of the same length, but, as we saw above, this
is usually not the case when dealing with distributions of
different invariants, e.g., degree vs. PageRank. For PDFs of
different lengths, such as the ones generated by Scott’s rule,
those measures are not suitable unless they are normalized to
have the same length. We discussed the challenges of such
normalization above (a general feature representation model).

To emphasize the importance of ‘shape’ match between
distributions of different invariants, and not point-wise match,
we propose to leverage the dynamic time warping (DTW)
algorithm. DTW is designed to calculate an optimal match
between two given sequences by “warping” them non-linearly,
so that the distance calculated is independent of variations
in the warped dimension. For PDFs that denote the graph
statistics distributions, DTW calculates the feature-by-feature
distance independent of variations in the number of buckets,
which can be converted to similarity in many ways, including
s = (1 + d)−1. DTW-based similarity works for both cases
whether two PDFs are of the same or different lengths.

For generality, we integrate DTW and traditional distance-
based methods in the proposed framework and primarily use
DTW similarity in our experiments. Per baseline graph Gi, we
compute the pairwise feature relevance matrix SFi:

SFi(fj , fl) = s(PDFGi,fj , PDFGi,fl) (3)

where PDFGi,fj is the PDF for the jth feature of graph Gi,
and s() is the desired similarity between two distributions.
By definition, the diagonal elements of each relevance matrix



(a) SOCIAL SCIENCE: SOC-SLASHDOT0811 [22] (b) Neuroscience: Functional connectome
Fig. 2: The discrete and continuous PDFs with different bucket sizing, from left to right, the bucket sizing is: 1
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, 1
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, 1

10000
times

the range of values; “unique” means the unique values in the PDF; “Scott” refers to the bucket sizing computed by Scott’s rule.

are 1. We can obtain the aggregate pairwise feature relevance
matrix as their weighted sum:

SF(fj , fl) =
∑K
i=1 wi · SFi(fj , fl) (4)

where wi is the weight or ‘importance’ of graph Gi in the
computation, and

∑K
i=1 wi = 1.

C. Proposed Model for Domain-Specificity

The last term, φ(g,G1, . . . , Gk), in Eq. (1) couples the
input graph g and the domain knowledge. Unlike prior work
in the literature which focuses on one graph only and assigns
interestingness or anomaly scores to a distribution indepen-
dently of the domain knowledge (e.g., Scagnostics [26]), the
third term aims to find the distributions that bear the most or
fewest number of similarities with other graphs in the domain.

We propose to model the domain specificity with a simple
and intuitive linear formulation, φ(g,G1, . . . , Gk) = fTh,
where hj in h = [h1, h2, . . . , hF ] is the aggregate relation
score between the jth marginal distributions (e.g., degree) of
g and the baseline graphs Gi. The relation can be set to be
a similarity or a distance measure resulting in an ‘ordinary’
or ‘surprising’ summary (Sec. IV-A). This choice is directly
related to the “0 pit” problem: (i) If h is modeled as similarity,
we need to force the solution of the optimization problem
to make selections by adding constraints on f ; and (ii) If h
is modeled as distance, the last term becomes negative (i.e.,
minimizing the ‘negative’ distance) by setting λ3 < 0.

Unlike SF which computes the relevance between different
invariant distributions of a single graph Gi, h focuses on the
relation between equivalent distributions of the input graph g
and the baseline graphs Gi. The aggregate relation between the
input g and the domain is computed as the weighted average
of the relations between all the combinations of g and the
baseline graphs Gi. We use hsj to represent the jth entry of
the relation vector based on similarity:

hsj =
∑K
i=1 wi · s(PDFg,fj , PDFGi,fj ) (5)

Similarly, hd represents the relation vector based on a distance
measure, and is defined equivalently (by replacing s() with a
distance measure d().

IV. EAGLE: PROPOSED ALGORITHM

Our proposed formulation in Optimization Problem 1 cor-
responds to a mixed-integer quadratic programming (MIQP)
problem. The problem of 0–1 integer programming is NP-
complete and the integral constraints bring challenges such
as intractability and poorly-behaved derivatives, which make
algorithms such as gradient descent unwarranted. To solve
these challenges, we first explain how we approximate MIQP
with a sequence of mixed-integer linear programming (MILP),
and then propose two solutions to the “0 pit” problem by
adding application-driven constraints in Section IV-A. We give
the theoretical analysis on complexity in Section IV-B.

Although the l0-norm in Eq. (1) encodes the conciseness
requirement, we relax it by using the l2-norm, which is
mathematically tractable. By rewriting ‖f‖22 = fT f and using
the F × F identity matrix IF, the equation takes the form:

arg min
f∈{0,1}F×1

fT (λ1SF + λ2IF)︸ ︷︷ ︸
Q

f + fT λ3h︸︷︷︸
r

. (6)

The integer vector f can be expressed as the linear constraint
to Eq. (6) thus obtaining the form of MIQP:

minimize
f

fTQf + rT f

subject to 0 ≤
∑F
i f(i) ≤ F

0 ≤ f(i) ≤ 1, i = 1, . . . , F.

(7)

We apply the cutting plane method [15] to convert Prob-
lem 7 to a series MILP by introducing a slack variable z:

minimize
f ,z

z + rT f

subject to 0 ≤
∑F
i f(i) ≤ F

0 ≤ f(i) ≤ 1, i = 1, . . . , F.

fTQf − z ≤ 0, z ≥ 0

(8)

Problem 8 gives the local MILP approximation to Problem 7
at one step. To further approximate the MIQP, we need to itera-
tively solve a series of MILP by updating the linear constraints
until convergence. To update the linear constraints, we denote
f at the tth iteration as ft such that ft = ft−1 + δ, where
ft−1 is the vector obtained in the previous iteration and δ is a



variable vector. By using first-order Taylor approximation for
the last constraint in Problem (8), we obtain:

fTt Qft − z = fTt−1Qft−1 + 2fTt−1Qδ − z +O(|δ|2)
= −fTt−1Qft−1 + 2fTt−1Qft − z +O(|ft − ft−1|2)
≈ −fTt−1Qft−1 + 2fTt−1Qf − z ≤ 0,

where we omitted the second-order terms. Thus, to solve the
MIQP of Problem (7), we need to solve a series of MILPs in
Problem (8) combined with this updated linear constraint.

A. EAGLE: Application-driven Constraints

As we mentioned in Section III-A, the last term of Eq. (6)
can be tuned to provide an ‘ordinary/expected’ summary or a
‘surprising’ summary by identifying features that are similar
or dissimilar to the ones in the baseline graphs, respectively.
During exploratory analysis, this allows for some flexibility
about the type of relevance that is sought between the sum-
mary of g and the baseline graphs G. Next, without loss of
generality, we focus on surprising summaries, and introduce
two application-driven constraints: (i) fixed, and (ii) flexible
number of features in the summary. Our analysis can be easily
extended to the case of ordinary summaries as well.
A1. EAGLE-FIX: Fixed number of features. In the case of
creating a surprising summary for the input graph, the last
term in Eq. (6) can be set such that h captures similarities
between the features of g and Gi, i.e., it is computed based
on Eq. (5) and denoted by hs. To solve the 0-pit problem, we
introduce a capacity constraint for the summary, in addition to
the constraints that are given in Problem (7), and set r = λ3hs:∑F

i f(i) = c [new capacity constraint] (9)

To prevent the objective function from reaching the opti-
mum with some desired properties overwhelming the others,
λ{1,2,3} should be set such that the three terms in Optimization
Problem 1 are comparable (i.e., of the same scale). The values
of these normalization terms are primarily determined by the
maximums of (i) fTSFf , (i) ‖f‖22, or fT f and (iii) fTh. We
discuss the parameter setting in the experiments (Sec. V).

Putting everything together, in the case of finding surprising
summaries for a given input, we propose the EAGLE-FIX
algorithm, for which we give the pseudocode in Algorithm 1.
A2. EAGLE-FLEX: Flexible number of features. In the case
of creating a surprising summary for the input graph, we can
search for a flexible number of features by setting the last
term in Eq. (6) such that it captures the distances between
the features of g and Gi (i.e., h = hd) and λ3 < 0. Note
that a very small value λ3 may render the third term smaller
than other terms, which would lead the objective function to
fall into the “0 pit”. Therefore, to determine the regularization
parameters in this case, we propose a different technique that
obtains the range of λ3 based on λ1 and λ2 values.
• Upper bound for λ3. Suppose there are c ≥ 0 selections
in the solution f . Then, the value of the relaxed objective
function (6) can be calculated as:

λ1

∑
i,j∈S SF (i, j) + λ2c+ λ3

∑
i∈S hd(i) (10)

Algorithm 1 EAGLE-FIX

Input: Graph g with F invariant distributions; Graph database with
Gi (i = 1 . . .K) graphs with their F invariant distributions

Output: Binary vector f of selected features in the summary of g

1: I. Preprocessing Phase: Computations over the Domain
2: for i = 1 . . .K
3: // Step 1: Feature Representation Model
4: for j = 1 . . . F
5: PDFnew

Gi,fj
= Scott(PDFGi,fj ) . Scott’s rule, Eq. (2)

6: // Step 2: Feature Diversity Model
7: for j = 1 . . . F , and l = j + 1 . . . F
8: SFi(fj , fl) = s(PDFnew

Gi,fj
, PDFnew

Gi,fl
) . Eq. (3)

9: SF(fj , fl) =
∑K

i=1 wi · SFi(fj , fl) . Eq. (4)

10: II. Query Phase: Summary Creation
11: Step 1: Domain-specificity Model
12: for l = 1 . . . F
13: hsl =

∑K
i=1 wi · s(PDFnew

g,fl
, PDFnew

Gi,fl
) . Eq. (5)

14: Step 2: Feature Selection
15: Q = λ1SF + λ2IF . Regularization parameters λ1, λ2, λ3

16: r = λ3hs

17: f = MIQP(Q, r) . Solve Problem (7)

(a) First term: fTSFf (b) Third term: fThd

Fig. 3: Example: S = {2, 4, 5}, f = {0, 1, 0, 1, 1}, and degree
as the newly added feature (i.e., ε = 1). (a) The sum of the
shaded areas in SF corresponds to the first term. After adding
the degree, i.e., S ′ = S ∪ {1}, the sum of the blue rectangles
correspond to the first term. (b) Blue rounded rectangles in hd

indicate hd(ε); The sum of its shaded cells gives the third term.

where S denotes the collection of the indices of selected
features f , which is explained in Fig. 3. When c = 0, S = ∅
Similarly, when there are c + 1 selections, the value of the
objective function is:

λ1

∑
i,j∈S′ SF (i, j) + λ2(c+ 1) + λ3

∑
i∈S′ hd(i) (11)

where S ′ = S∪{ε}, and {ε} denotes the index of the newly
selected feature. Our proposed Optimization Problem 1 will
only select c+ 1 features if that further reduces the objective
function, which implies that Eq. (10) > (11), or:

λ3 < −
λ1(

∑
i,j∈S′ SF (i, j)−

∑
i,j∈S SF (i, j)) + λ2∑

i∈S′ hd(i)−
∑

i∈S hd(i)
⇒

λ3 < −
λ1(

∑
i∈S SF (i, ε) +

∑
i∈S SF (ε, i) + 1) + λ2

hd(ε)

(12)

By assuming that ε corresponds to the maximum entry in
hd, we obtain the upper bound of λ3:

λ3 < −
λ1 + λ2

max(hd)
(13)



• Lower bound for λ3. By requiring the three terms in the
optimization problem to be comparable, we can obtain a lower
bound for λ3. Assuming that λ3 < 0 and c = |S|, the third
term must be smaller or equal to the maximum of the others:

λ3 > −
max{λ1

∑
i,j∈S SF (i, j), λ2|S|}∑

i∈S hd(i)
(14)

Inequality (14) indicates that the lower bound of λ3 is
determined by S (it is involved in all the terms of (14)). In
order to find the exact lower bound, we need to consider all
possible sets of S (or equivalently, all possible binary vectors
f ), which are O(2F ). Thus, to reduce the complexity of its
computation we provide an empirical lower bound, which
works well in practice:

λ3 ≥ −d
λ1 + λ2

max(hd)
e − 1 (15)

We discuss the choices of λ1, λ2 and λ3 more in Section V.

B. Complexity
The runtime of EAGLE consists of three parts: (1) computing

SF, (2) computing h, and (3) runtime of MIQP. In the first two
parts, the runtime τ of computing similarity / distance between
two PDFs is determined by the distance measure. Although τ
can be affected by the lengths of PDFs, it is generally trivial.

(1) Since SFi
is symmetric with diagonal elements equal

to 1, the number of similarity computations for one baseline
graph is O(F 2). SF aggregates K of them, so the complexity
for SF is O(KF (F−1)τ

2 ).
(2) The feature-by-feature relation between g and Gi con-

structs the hi vector with O(F ) similarity computations. Then,
h aggregates K of them, resulting in O(KFτ) complexity.

(3) The runtime complexity of MIQP depends on the speed
of convergence between the quadratic term and its linear
approximation. If the convergence criterion is not reached,
EAGLE would run with every possible value of f to reach the
minimum, which is O(2F ). However, empirical experiments
show that in general EAGLE takes about 20∼30 iterations
to reach satisfying approximation, if not converging. This is
illustrated in Fig. 4, where we set the maximum number of
iterations to be 150. Interestingly, we observe that the MIQP
runtime does not only depend on the length of vector f , but
also on the values of entries in f : If the values are small and
close to each other, MIQP would require more comparisons to
find the path towards the optimum (Fig. 4a); On the contrary, if
the values differ tremendously, this procedure becomes much
faster (Fig. 4b).

V. EXPERIMENTS

In this section we provide thorough experimental analysis
to evaluate our proposed approach. Specifically, we consider
the evaluation metrics: (1) The satisfaction of the desired
properties for exploratory analysis (P1-P3); (2) The scalability
of EAGLE algorithm (P4); and (3) Its robustness to the required
parameters. Moreover, we present an application of EAGLE
to a graph mining task, namely the classification of patients
(Schizophrenic) and healthy subjects based on fMRI data.

(a) HepPh citation graph: 21
features

(b) Slashdot0922 social
graph: 300 perturbed features

Fig. 4: Convergence of two runs with MIQP.

A. Baselines

No systematic empirical research exists that addresses
the problem of finding graph summaries by automatically
leveraging domain knowledge. Moreover, as we discussed in
Section II, unlike traditional feature selection methods that
choose features by jointly operating on a set of observations,
our method is ‘conditional’: It selects features for an input
graph conditioned on observations from other graphs (domain
knowledge). Despite these limitations in the literature, we
evaluate the effectiveness of EAGLE against:
• RANDOM: This approach randomly selects a subset of
features as the summary of the input graph. It is often used as
the preliminary analysis given little or no prior knowledge.
• SCAGNOSTICS [26]: This method was proposed to sum-
marize high-dimensional datasets by detecting anomalies in
density, shape, and trend. Since it applies on bivariate dis-
tributions, we modified it to compute 9 measures (area of
convex hull, skinniness, stringiness, straightness, monotonic
score, skewness, clumpy score, striation, and binning score)
on each one of F univariate distributions. Features with the
top score in at least one measure are included in the summary.
• SURPRISING: This method is a special case of EAGLE
with λ1 = λ2 = 0 and detects patterns that are different (or
surprising) from the ones that appear in the baseline graphs.

B. Datasets

The real datasets that we used in our experiments are from
three different domains: connectomics, citation networks, and
social science. We give short descriptions of these datasets
in Table II. The first two connectomes, Brain-Voxel1
and Brain-Voxel2, were generated using the traditional
network discovery [6] process: (i) computation of the pairwise
correlations between the 3789 time series obtained during
fMRI and (ii) application of threshold (θ = 0.9) to keep the
most significant associations and get sparse networks.

C. Experimental setup

EAGLE is implemented in MATLAB, and all the experi-
ments were performed on a laptop equipped with an Intel Core
i7-4870HQ Processor and 16GB memory.

EAGLE takes an arbitrary number of graph features as input
and outputs a small set of representative features as a summary



TABLE II: Domains and graphs used in our experiments.

Domain Name Nodes Edges Description

Connectomics [1]
Brain-Voxel1 3 789 399 069 undirected unweighted
Brain-Voxel2 3 789 148 648 undirected unweighted

COBRE [2] 1 166 ∼679 000 undirected unweighted

Citation networks [22] HepTh 27 770 352 807 directed unweighted
HepPh 34 546 421 578 directed unweighted

Social science [22]
Epinions 75 879 508 837 directed unweighted

Slashdot0811 77 360 905 468 directed unweighted
Slashdot0922 82 168 948 464 directed unweighted

based on the domain knowledge. The features used in the
experiments include 28 common node- and structure-specific
invariant distributions and other graph properties: The node-
specific features that we used are in-degree, out-degree, PageR-
ank, in-closeness, out-closeness, hubs, authorities, clustering
coefficient, betweenness, top eigenvectors, network constraint,
and roles [13]. The structure-specific statistics comprise egonet
features, such as out-degree, out-neighbors, in-degree, in-
neighbors, and size of egonets in edges and nodes. Moreover,
we considered other features, such as the distribution of com-
munities, weak / strong connected components, in / out-going
community affiliations, motifs, community profiles, random
left and right singular values, and hops [22].

Equation (6) defines the relationships between the regular-
ization terms λ1, λ2, and λ3: By observing that the maximum
values of the three terms are F 2, F and F , respectively,
we define the relationship between the regularization terms
Fλ1 = λ2 and λ2 = λ3. For EAGLE-FIX, we set λ1 = 1

F ,
λ2 = 1, and λ3 = 1; for EAGLE-FLEX, we set λ1 = 1

F ,
λ2 = 1, and compute λ3 according to Equation (15). We use
the default value w = { 1

K }
F×1 to weigh the contribution of

baseline graphs. However, if prior information is available, the
weights can be set differently as long as

∑K
i wi = 1.

D. Satisfaction of Desired Properties

In this experiment, we quantitatively evaluate the satis-
faction of the desired properties by EAGLE and the base-
lines. We obtain EAGLE summaries for two input graphs,
HepPh and Slashdot0922, considering three domains
with different sets of baseline graphs: (i) connectomics using
Brain-Voxel1 and Brain-Voxel2; (ii) citation networks
using HepTh; and (iii) social networks using Epinions and
Slashdot0811. For fairness, we set all the methods to
give the same number of features as SCAGNOSTICS, and thus
run EAGLE-FIX. To evaluate the conciseness of our method,
we present experiments in Section. V-F. For all the methods,
we evaluate the diversity and domain-specificity (‘surprising’)
of the selected features f via correlation: We compute the
pairwise feature correlation matrix between the F univariate
distributions (with the same binning) of the baseline graphs,
CG , and quantify diversity as fTCGf . Similarly, based on
the correlation matrix C′g between the input graph and the
baseline features, we quantify domain-specificity as fTC′g. For
completeness, we apply three different correlation coefficients:
Pearson’s, Kendall’s Tau, and Spearman’s Rank. Figure 5
illustrates the results for Pearson’s correlation (dark shades
for diversity, light for domain specificity). Similar patterns are

Fig. 5: Effectiveness in terms of diversity and domain-specificity
evaluated using Pearson’s correlation coefficient (low values are
better). EAGLE achieves the best performance in every case.

detected by using the other two metrics, which are omitted for
brevity (they can be found in our code repository).
Diversity. Diversity is measured using pairwise feature cor-
relation in CG , so lower values indicate higher diversity.
The results show that EAGLE outperforms all the baselines
in every case. We observe an extreme case: the summary
of HepPh conditioned on citation networks yields almost 0
Pearson correlation value. This demonstrates the effectiveness
of EAGLE in selecting features that are diverse especially when
the baseline graphs and the input are very similar.
Domain-Specificity. Similar to diversity, we explore ‘surpris-
ing’ patterns of the input graph with respect to the baselines
via the feature-wise correlation (low values correspond to
high domain-specificity). Figure 5 shows that EAGLE outper-
forms all the baselines by up to ∼ 51.74%. Qualitatively,
the clustering coefficient distribution and community size
distribution are always selected when the input graph and the
baseline graphs are from different domains. Intuitively, this is
reasonable because the community structure differs in graphs
from different domains and both properties are related to it.

E. Scalability

We evaluate the scalability of the proposed methods with
regard to (a) number of features, and (b) size of the baseline
graphs. Here we extend the feature space beyond the original
28 by creating ‘perturbed’ features with up to 30% random
noise.
Number of features. We create a mixed domain containing
the citation graph (HepTh) and two social graphs (Epinions
and Slashdot0922) as baselines, and run EAGLE-FLEX to
summarize two input graphs: HepPh and Slashdot0811,
with the number of features (original and perturbed) varying
from 50 to 400. In Fig. 6a, we observe that, for both input
graphs, EAGLE-FLEX scales linearly and almost identically
with the number of features in the semi-logarithmic plot,
which indicates its quadratic complexity. Moreover, given
identical number of features, the runtime of MIQP on different
input graphs is almost the same.
Size of baseline graphs. In this experiment we test the
scalability in terms of the size of baseline graphs for a
fixed number of selected features. We create a series of syn-
thetic datasets with feature space including 7 global invariant
distributions and 13 perturbed invariants. The sizes of the



(a) Number of features (b) Size of baseline graphs
Fig. 6: Scalability of EAGLE-FLEX on two input graphs (citation
and social). (a) In both cases, EAGLE-FLEX scales quadratically
in terms of the number of features with similar behavior of MIQP
(b) The runtime is independent of the size of baseline graphs.

synthetic graphs constructed are 10K, 20K, 40K, 80K, and
160K. The runtime of EAGLE-FLEX on these datasets is shown
in Fig. 6b. We observe a relatively “flat” pattern in running
time, which indicates that the optimization solver in EAGLE
is independent of the size of baseline graphs. Note that there
is some fluctuation in the curve: the running time of EAGLE-
FLEX on 40K graphs is the shortest, while that on 10K is the
longest. Despite the presence of randomness, this phenomenon
points to one direction of our future work, which is to explore
the behavior of MIQP in EAGLE on large-scale graphs.

F. Robustness to parameters

We run EAGLE-FLEX to evaluate the sensitivity of reg-
ularization parameters λ{1,2,3} and the corresponding con-
ciseness of the summary. The baseline graphs are HepTh,
Slashdot0811 and Brain-Voxel1, and a total of 28
features are generated (no perturbation). Per regularizer, we
perform a grid search over { 1

32 ,
1
16 , . . . , 16, 32} times its de-

fault value (Sec. V-C), while keeping the other regularizers at
their default values. We plot the number of selected features in
the summary and the percentage of common selected features
between that summary and the ‘default’ summary (based
solely on the default values). These quantities are illustrated
as a function of the regularizer values in Fig. 7. We note that
we do not depict the percentage for the default value (marked
with ’*’) in the blue curve, since it is 100% by definition.

The blue curves in Figures (7a)-(b) show that values of
regularization around the default give relatively stable results,
with 50%∼80% identical features to the default setting. Fig-
ure (7c) shows that the selection of features is stable up to
the default value, but sensitive for larger λ3 for which the last
term dominates (and thus puts more emphasis on ‘surprising’
patterns). From the red curves, we observe that the default
values lead to few selected features, indicating the conciseness
(property P2) of the EAGLE summaries.

G. Case study: classification on brain graphs

How can EAGLE be applied to graph classification, a
traditional data mining task? We focus on the domain of
neuroscience, and use COBRE [2], a dataset from the NIH
Center for Biomedical Research Excellence with resting-
state fMRI data from 72 patients with schizophrenia and 76
healthy controls. From the 1166 fMRI time series (avg. length

TABLE III: Classification on COBRE: AUC scores per method.

Method Category Unweighted Weighted
Ordinary Surprising Ordinary Surprising

EAGLE-FLEX 0.6893 0.5499 0.7096 0.7296

EAGLE-FIX: 6 0.5114 0.5445 0.6961 0.7371
EAGLE-FIX: 8 0.6795 0.5904 0.7216 0.7079
EAGLE-FIX: 10 0.5003 0.4989 0.7032 0.6807

Full - - 0.6681 0.7147

Baselines Baseline 1: 0.7028 Baseline 2: 0.1099

100 timesteps), we created undirected, weighted graphs with
θ = 0.6 following the traditional method [6] (cf. Sec. V-B).

The task is to use the EAGLE summaries to classify the
healthy controls and patients. We create the feature space by
calculating the distributions of 11 features: weighted and un-
weighted degree, PageRank, closeness, eigenvector, clustering
coefficient, betweenness, neighbors of the egonets, degree of
the egonets, and sizes of egonets in edges and nodes. To obtain
feature representations that can be used for classification, we
used a random set of 36 healthy subjects as the baseline
graphs, and ran both EAGLE-FIX (with F = {6, 8, 10})
and EAGLE-FLEX on the remaining graphs (40 controls and
40 patients) and obtained both ‘surprising’ and ‘oridinary’
summaries for them. We consider two vector representations
for the summaries: (i) Unweighted: a binary vector b with
1s for the selected features by EAGLE; and (ii) Weighted: a
real vector with the importance of each selected feature, i.e.,
b�h where h is given in Eq. (5) (or its distance-based coun-
terpart), and � denotes component-wise multiplication. We
also consider ‘Full’, which uses vector h as the representation
of each connectome (without feature selection).

As baselines we considered two traditional methods in
neuroscience: (a) per connectome, a vector representation with
the mean of each feature distribution [8] and (b) a ‘flat’,
vectorized (1 × N2) representation of the N × N adjacency
matrix of the connectome [24]. For the classification task,
we trained an SVM classifier that uses the RBF (radial basis
function) kernel on the vector representations of our methods
and the baselines, by conducting 10-fold cross validation.
Table III gives the accuracy (AUC) of each method.

According to Table III, we have two observations: (1) With-
out knowing anything about the dataset, EAGLE-FLEX pro-
vides promising performance on the task of classification,
although EAGLE-FIX outperforms EAGLE-FLEX with some
explicit settings on F . The EAGLE-FLEX and EAGLE-FIX
summaries lead to better performance than the baseline meth-
ods, indicating the fact that although not designed explicitly
for this, features selected by EAGLE can be applied to specific
tasks such as classification; (2) Compared with the use of
all weighted features (Full) and selection (EAGLE-FLEX), we
observe that the latter improves the performance over the
former by eliminating the noise contained in the dataset,
which demonstrates the effectiveness of selected features.
Qualitatively, among the 11 features, PageRank is the most
frequently picked feature by EAGLE-FLEX. Weighted and



(a) Sensitivity to λ1. (b) Sensitivity to λ2. (c) Sensitivity to λ3.

Fig. 7: Robustness of EAGLE to the regularization parameters. Left y axis: percentage of identical selected features between λ and
its default value. Right y axis: total number of invariant distributions included in the summary.

unweighted degree are the most distinguishable features when
running EAGLE-FIX that are never picked in summaries for
controls, but are selected for patients.

VI. CONCLUSION

We propose a novel way to summarize a graph using a set
of informative, interpretable features, resulting in a diverse,
concise, domain-specific, and efficient-to-compute summary.
Our novel formulation targets early data exploration and
provides an alternative to the feature engineering process
that is often a part of graph mining tasks. We frame the
problem as constrained optimization, based on ‘conditional
feature selection, which is tailored to the domain expectations
and knowledge, in contrast to existing work which views
each graph as a unit independent of its domain or many
graph observations as a whole. We also introduce two efficient
algorithms, EAGLE-FIX and EAGLE-FLEX, which handle the
correlations between graph features and find summaries that
are fixed or flexible in size. Our experiments show that the
EAGLE variants are effective, their summaries satisfy all the
desired properties, outperform alternative approaches that can
be cast to solve this problem, and they are effective in data
mining tasks such as classification despite not being tailored
to it. Future work may explore extensions to more complex
design choices or bivariate distributions of features (often used
in spam detection), as well as scaling the method up more.
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