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ABSTRACT

How can we summarize large graphs of different types, e.g., unipar-
tite or bipartite, directed or undirected? How can we find anoma-
lous patterns in such graphs efficiently? In this paper we present
PERSEUS3, a large-scale graph mining system that supports analy-
sis of three types of graphs: unipartite and undirected; bipartite and
undirected; and unipartite and directed. Our system provides cou-
pled summarization of graph properties and the network structure,
and allows the user to interactively explore normal and anomalous
node behaviors.

PERSEUS3 is developed based on PERSEUS [[7] with three sig-
nificant extensions: (1) Graph statistics are extracted depending
on the type of the input network (e.g., total degree, eigenvectors
for undirected graphs; in/out degree, SVD vectors for directed
graphs); (2) Subgraphs of the selected node are interactively vi-
sualized through the adjacency matrices; (3) Heatmaps (instead of
simple scatterplots) are adopted in graph summarization to improve
the scalability of the system.

Our extensive experiments show that PERSEUS3 handles differ-
ent tasks of graph mining efficiently. Specifically we run the uni-
variate undirected graph analysis on a Twitter who-follows-whom
graph which spans 0.26 million users and 220 million links; we also
run the bipartite graph analysis on a user-movie ratings dataset, and
the directed graph analysis on a patent citation graph. We report the
patterns discovered, including bipartite cores and outliers spotted
by PERSEUS3.
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1. INTRODUCTION

Modeling and applying algorithms to large graphs is one way of
exploring patterns in the data, but, in general, it requires that one
should have coding and modeling experience, as well as be aware
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of what she is looking. Various types of graph analysis nowadays
are needed everywhere: web-based communities, such as Facebook
and Twitter, are putting more and more effort to perform bot and
malicious page detection; the ratings in Netflix need validation that
they are from real users; in one’s daily life, she might just want to
make sure she is not “talking to a dog on the internet”. In such
scenarios, visualization provides a convenient way to explore big
graphs for people with little expertise in graph mining , such as
marketing managers, domain experts, and more.

In this paper, we propose PERSEUS3, an interactive, large-scale
graph mining system that performs graph summarization and pre-
liminary anomaly exploration and targets users with little experi-
ence who want to gain insights into their graph data. PERSEUS3 is
built atop PERSEUS [7]] which provides the following advantages:

e Rich types of graph summarization. PERSEUS3 is capable
of handling univariate undirected, bipartite and univariate di-
rected graphs.

o Interactive subgraph visualization. Any method that uses
graph layouts, will face the “death star problem". That is, if
the node belongs to a large clique, its egonet would contain
so many edges that it looks chaotic - colloquially called the
’death star’. Our solution is to give the adjacency matrix, in-
stead of the spring-model graph - then, cliques are full areas
of the matrix, easily understood by the human analyst.

e Heatmap representation. Scatter-plots with millions of points

are prohibitively slow to plot. Instead, PERSEUS3 uses heatmaps,

achieving up to 30x improvement on the speed of interaction,
and making the plotting time effectively constant on the size
of the graph.

2. BACKGROUND

Our work is inspired by different fields of research, with the two
major ones being: (i) large-scale graph visualization, and (ii) outlier
detection.

2.1 Large-scale graph visualization

Apolo [3] is a visualization tool that supports incrementally re-
vealing neighbors of some selected nodes in a graph. NET-RAY [5]],
a visual mining system, is proposed to handle the visualization of
billion-scale graphs, adjacency matrix mining and outlier detection.
Although this work provides algorithms to obtain plots for various
graph mining tasks, the system is not interactive, thus requiring
experienced users to make sense of the results. PERSEUS [7] in-
troduced an interactive large-scale graph visualization and mining
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system, which supports user attention routing to outliers and inter-
action with distribution plots. However, it suffers from scalability
as the amount of points that need displaying in some distributions
of graph properties may overflow the resolution of a typical screen.
Also, it only handles univariate, undirected graphs by displaying
the univariate distribution of the total node degree, and bivariate
distributions of Ritz eigenvectors by symmetrizing the input di-
rected graphs.

2.2  QOutlier detection

Many works are proposed in large-scale outlier detection, such as
LOF [2] and LOCI [9]. In industry, some practical frameworks are
also presented: to detect fake accounts, Facebook immune system
was proposed to detect single agents controlling many accounts;
CopyCatch [1f], a Hadoop-based method was proposed to detect
groups of users who coordinate to give page likes. There are also
anti-phishing and anti-malware mechanisms, rendering real accounts
difficult to be compromised. However, these techniques are either
specific to Facebook users, or generally do not support data visual-
ization and user interaction.

In general, there is not much work on large-scale interactive visual-
ization of heterogeneous graphs that also supports outlier detection.

3. METHOD

In this section we describe in detail how PERSEUS3 supports an-
alysis of real-world graphs that couples various components con-
tributing to both a global and local understanding of the existing
patterns. An overview of the system is illustrated in Figure[T}
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Figure 1: PERSEUS3 system overview. Backend: Graph statistics are
extracted depending on the graph type, and stored in the database to
handle queries from the frontend. Anomaly detection is also performed
based on the graph statistics. Frontend: The user interacts with the
graph through dynamic egonet and adjacency matrix of the selected
node, along with coupled distributions of graph statistics provided by
the graph summarization module.

3.1 Rich Types of Graph Summarization

PERSEUS3 automatically computes various graph properties us-
ing PEGASUS [6] in a distributed off-line manner. It then extracts
graph statistics depending on the type of the input graph and con-
structs plots for univariate and/or bivariate relationships.

For univariate, undirected graph analysis, PERSEUS3 converts
the input graph to symmetric in order to compute the total degree
distribution and Ritz eigenvectors. For unipartite and bipartite di-
rected graphs, PERSEUS3 computes the importance of the nodes
through the authority and hubness metrics. Such statistics can be
calculated through Singular Vector Decomposition (SVD) of the

adjacency matrix of the input graph. We use the left singular vec-
tors (U) to measure the hubness and the right singular vectors (V)
to measure the authority. In addition, we separate the total degree
centrality applied for undirected graphs into in- and out-degree cen-
trality for directed graphs. The complete statistics extracted for all
three types of graphs are summarized in Table[T]

Graph type Statistics

Total degree, PageRank,

Unipartite + undirected .
P 1%, 2n4 374 and 4" eigenvector

In degree, 1°%, 2% V vector (V1, V2),

Bipartite + directed
ipartite + directe. out degree, 1°t, 2™ U vector (U1, U2)

In degree, V1, V2 vector,

Unipartite + directed out degree, U1, U2 vector

Table 1: Statistics visualized for each type of graph

The extracted statistics are precomputed and combined into six
univariate and/or bivariate distributions displayed in the frontend to
provide a global understanding of the normal and anomalous pat-
terns in the data. For undirected graphs, these distributions are:
(1) total degree distribution, (ii) total degree vs. PageRank, (iii)
PageRank distribution, (iv) 1°7 vs. ond eigenvector, (v) ondyg. 374
eigenvector and (vi) 3" vs. 4*" eigenvector. For directed graphs,
the six distributions are: (i) in-degree distribution, (ii) in-degree
vs. V1 vector, (iii))V1 vs. V2 vector, (iv) out-degree distribution,
(v) out-degree vs. Ul vector and (vi) Ul vs. U2 vector. In each
type of graph analysis, the points in all the distribution plots are
linked through their corresponding nodes in the backend database.
For instance, if the user clicks on a point in a specific plot the sys-
tem highlights the corresponding points in the remaining five plots.
Note that for bipartite graphs, as the source nodes do not connected
to each other via edges, and neither do the destination nodes, the
distributions (i)-(ii)-(iii) and (iv)-(v)-(vi) are linked separately for
bipartite graphs.

All the distributions considered follow known distributions in
real-world graphs, e.g., the degree distribution and the PageRank
distribution follow a power-law-like pattern; the distributions of
eigenvectors exhibit the “EigenSpokes" [10] pattern if tightly con-
nected components exist, and intuitively in bipartite graphs, nodes
with high value of in/out degree tend to have high values in V/U
vectors as such nodes tend to be important destination/source nodes.

3.2 Interactive Subgraph Visualization

In addition to the dynamic egonet, PERSEUS3 includes the inter-
active adjacency sub-matrix representing the subgraph containing
the selected node and its 1-hop neighbors to provide the user with
local understanding. For unipartite, undirected or directed graphs,
the rows of the adjacency sub-matrix are sorted by the value in the
first left singular vector (U1), and the columns are sorted by the
value in the first right singular vector (V1). For nodes with more
than 100 neighbors, the top 100 of them and their edges are dis-
played. The richer neighboring information brought by the adja-
cency matrix could guide the interaction with the egonets so that
the user can detect group anomalies such as bipartite cores, which
solves the “death star problem" mentioned in the introduction.

However, this approach provides little information for bipartite
graphs as the 1-hop neighbors are all either source nodes or desti-
nation nodes, rendering only one row or column in the adjacency
matrix. To handle this problem, PERSEUS3 identifies similar nodes
based on common neighbors to the one that the user selects, and
visualizes them along with their edges in the corresponding ad-
jacency sub-matrix. To efficiently find similar nodes, PERSEUS3
employs Local Sensitivity Hashing[11] (LSH) to pre-compute the



similarity of pairs of nodes as it avoids the quadratic computational
cost. LSH computes and sorts pairs of nodes based on the num-
ber of common neighbors and in bipartite graphs, similar pairs
of source/destination nodes are found based on common destina-
tion/source nodes. If a user clicks on a source node, up to 100
similar source nodes are displayed as rows sorted by U1 in the ad-
jacency matrix and up to 100 destination nodes they are pointing to
are displayed as columns sorted by V1. Similar rules apply when
a user clicks on a destination node. Figure [2]shows an example of
bipartite graph analysis, where PERSEUS3 displays the adjacency
matrix for the node 1940, which was selected in the Ul vs. U2 dis-
tribution plot. The high density of the row that corresponds to node
1940 indicates that the corresponding user is active and rates many
movies. The adjacency sub-matrix also displays other users based
on common rated movies. The adjacency sub-matrix ‘links’ to all
the other plots—e.g., if node 1979 is of interest and the user clicks on
it, the corresponding points will be highlighted in the distribution
plots.

To demonstrate that the proposed method is generic and can be
applied in different contexts, we perform experiments on three het-
erogeneous datasets and address three research questions: (1) What
do extreme points denote in the eigenvector distributions? (2) What
do the graph property distributions look like for a normal graph and
one with anomalies? (3) What anomalous patterns does PERSEUS3
find in real-world graphs?

4.1 Univariate Undirected Graph Analysis

Twitter: President election This dataset [8] contains 126,628
accounts and 4,191,918 tweets. Each recorded tweet is either re-
lated to 2012 presidential election or posted by users who were
active on that topic. We use the notation @<username> to denote
a user. The graph is constructed by treating accounts (or users) as
nodes and the who-retweets-whom relationships between two ac-
counts as links. The frontend of PERSEUS3 is shown in Figure 3]

Extremes: » @obama2012 e @barackobama e @michellemalkin e @mgillaspie ® @runge3924
i . K

Figure 2: “Normal" graph (MovieLens, 1M) exhibits power laws, and
no micro-clusters in PERSEUS3. From top, left to right: 1) in-degree
distribution; 2) in-degree vs. V1; 3) V1 vs. V2; 3) out-degree distribu-
tion; 4) out-degree vs. Ul; 5) Ul vs. U2. Bottom left: information con-
sole with a summary of the selected node’s properties. Bottom right:
the interactive adjacency matrix of node 1940. The cyan points cor-
respond to the selected node (1940). The red dots correspond to node
1979 which was clicked in the adjacency matrix.

3.3 Heatmap Representation

PERSEUS3 widely uses the idea of heatmaps, and points with
identical graph statistics are aggregated in the distribution plots of
graph properties. This handles nicely exact-duplicate points, but
fails to address the slow projection time for most distributions, in-
cluding eigenvectors (for undirected graphs) and singular vectors
(directed), as their values are calculated with accuracy of 10 deci-
mal places. Plotting all the points unnecessarily burdens the fron-
tend, which has to project millions of dots although they are too
close to each other to be distinguished by a human eye. PERSEUS3
addresses this problem by dividing the plot into a k X k grid (the
default £ = 1000) and then computing the heatmap: grid cells
(’super-points’) with many points, become more red. Thanks to our
optimization, we can achieve 20x time savings or more: we need
less than 1 second, to display a plot of 77K pointsﬂ, which would
normally take 28 seconds (unacceptable, for human interaction).

4. EXPERIMENTS
"https://snap.stanford.edu/data/soc-Slashdot0811.html

Figure 3: Graph summarization of the Twitter dataset with colored
dots correspond to nodes that make sense. Blue and cyan: President
Obama (democrat); red: Michelle Malkin (conservative commenta-
tor); pink: mgillaspie (tea partier) and brown: runge3924 (suspicious
account). PERSEUS3 helps spot (at least) 4 groups / spokes.

From top, left to right we illustrate the (1) total-degree distribu-
tion; (2) total-degree vs. PageRank; (3) PageRank distribution; (4)
Ist vs. 2nd eigenvector, (5) 2nd vs. 3rd eigenvector; and (6) 3rd
vs. 4rd eigenvector distribution. We are interested in the “spike”
patterns in the eigenvector distributions, so we explore the details
of five selected nodes, marked in blue, cyan, red, pink and brown
in Figure[3] By leveraging the backend database, we found some
interesting patterns:

1. We observed that the blue node is close to the cyan one in
every distribution. It turns out to be two accounts relevant to
the same person.

2. In plot (4), there are two spikes with extremes @runge3924
and @barackobama. According to the context lookup, user
@runge3924 has 1237 retweets, but were retweeted O times.
In contrary, the number of retweets and retweeted messages
of @barackobama both rank top.

3. Representing different political opinions, @michellemalkin
(conservative commentator), @mgillaspie (tea partier) and
@barackobama (democrat) along with @runge3924 are lo-
cated at the extreme points of 4 spikes in plots (5) and (6).

For pattern 1, it means that accounts with similar purposes, such
as @barackobama and @obama2012, share almost identical statis-
tics in all of the distribution plots, as their retweet behaviors are
basically the same.
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In pattern 2, we suspect user @runge3924 to be a bot in Twitter
as it only retweets others and never gets retweeted. On the con-
trary, active accounts, such as @barackobama and @obama2012,
form a community whose posts are being retweeted. These con-
tradictory behaviors explain why their corresponding points have
opposite locations in the eigenvector plots.

Pattern 3 reflects the communities formed by users with different
political opinions. Real users in Twitter tend to interact with people
sharing the same interests, and form communities with different
topics. Since users of this dataset mainly focus on politics, different
political communities are detected. The bots, however, form totally
different communities from the majority of users in the graph.

4.2 Bipartite Graph Analysis

MovieLens 1M This dataset[4] contains 1,000,209 anonymous
ratings of approximately 3,900 movies given by 6,040 users who
joined MovieLens in 2000. The frontend is shown in Figure[2]

In this bipartite graph, we see that almost all the nodes comply
with common laws discussed above. This could indicate that there
are no anomalous users in this "stable benchmark dataset", which
can be used as a reference for ‘normal’ graph summarization.

4.3 Univariate Directed Graph Analysis

Patent citation This dataseﬂ contains 3,774,768 unique patents
and 16,518,948 directed citations among them. The graph summa-
rization is shown in Figure E| (a).

(a) Graph summarization of the patent citation dataset with
selected node marked in cyan

e e e
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(b) Adjacency matrix
Figure 4: PERSEUS3 on a directed graph (patent citation)

(c) Egonet

Clearly there is an “eigenspoke" pattern in the U and V distribu-
tions, indicating the existence of bipartite cores. By clicking nodes
in the spike, e.g., the one marked in cyan in Fig.[d] (a), PERSEUS3
returns its adjacency matrix illustrated in Fig. ] (b), which exhibits
the clear pattern of bipartite cores. Led by this information, fur-
ther exploration on the egonet can be conducted. By expanding the

Zhttps://snap.stanford.edu/data/cit- Patents.html

neighbors of the selected node in the egonet we confirm that it be-
longs to a bipartite core, shown in Fig. E| (c). Compared with (b)
and (c), we can find the former plot exhibits the clear pattern of a
bipartite core, while the latter looks messy.

5. CONCLUSIONS

In this paper, we presented PERSEUS3 which tackles large-scale
graph mining in an interactive manner. PERSEUS3 supports the an-
alysis of three different types of graphs, and helps with both global
and local understanding of normal and anomalous patterns in the
data through rich types of graph summarization and interactive sub-
graph visualization. The heatmap representation that PERSEUS3
adopts guarantees the ability to display plots with millions of points,
while maintaining the useful patterns. Moreover, we showed how
to use our system to visualize large, real-world graphs and reported
interesting discoveries and anomalies found, including extreme points
and near-bipartite cores and spikes.

Reproducibility: Our code is open-sourced and can be found at
https://www.dropbox.com/s/rl7m5yro8bgvx40/PERSEUS _light.
zip?dI=0| along with the twitter dataset (used in Figure 3).
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