
HashAlign: Hash-based Alignment of
Multiple Graphs

Mark Heimann?, Wei Lee?, Shengjie Pan, Kuan-Yu Chen, and Danai Koutra

Computer Science and Engineering,
University of Michigan

{mheimann,weile,jessepan,kyuchen,dkoutra}@umich.edu

Abstract. Fusing or aligning two or more networks is a fundamental building
block of many graph mining tasks (e.g., recommendation systems, link predic-
tion, collective analysis of networks). Most past work has focused on formulating
the pairwise graph alignment problem as an optimization problem with varying
constraints and relaxations. In this paper, we study the problem of multiple graph
alignment (i.e., the problem of collectively aligning multiple graphs at once) and
propose HASHALIGN, an efficient and intuitive hash-based framework for net-
work alignment that leverages structural properties and other node and edge at-
tributes (if available) simultaneously. We introduce a new construction of LSH
families, as well as robust node and graph features that are tailored for this task.
Our method quickly finds the alignment between multiple graphs while avoiding
the all-pairwise-comparison problem by expressing all alignments in terms of a
chosen ‘center’ graph. Our extensive experiments on synthetic and real networks
show that, on average, HASHALIGN is 2× faster and 10 to 20% more accurate
than the baselines in pairwise alignment, and 2× faster while 50% more accurate
in multiple graph alignment.

1 Introduction

Much of the data that is generated daily naturally form graphs, such as interactions
between users in social media, communication via email or phone calls, question an-
swering in forums, interactions between proteins, and more. Additionally, graphs may
be inferred from non-network data [6,18]. For joint analysis, it is often desirable to fuse
multiple graph data sources by finding the corresponding nodes across them. This task,
known as graph alignment or matching, is the focus of our work. It is a core graph
theoretical problem that has attracted significant interest, both in academia and indus-
try, due to its numerous applications: identifying users in social networks [21], match-
ing similar documents in lingual matching [4], brain graph alignment in neuroscience,
protein-protein alignment [4,5], chemical compound comparison, and more.

In many applications, such as in aligning protein-protein interaction networks, brain
graphs or social networks, the goal is to align multiple (more than two) networks at
once. Most existing methods get as input two networks, so they handle multiple network
alignment by expensively computing all pairwise alignments. In this paper, we seek to
devise an efficient method that collectively aligns multiple networks and can readily
adapt to the existence or not of other node/edge information in addition to the graph
topology, without increasing its complexity.
? These authors contributed equally to this work.

2

Fig. 1: Overview of proposed approach: HASHALIGN with input l undirected, weighted, at-
tributed graphs (node/edge attributes are denoted with different shades/lines). The frame-
work consists of four parts: (1) scalable, fast, robust, node-ID-invariant feature extraction
per graph; (2) ‘center’ graph discovery, which is GC = G2 in this example; (3) efficient,
hash-based similarity computation, SiC , between each graph Gi and GC (buckets with red
crosses do not contribute any pairwise similarity computations, and thus help with effi-
ciency); and (4) node matching computation to find at most one matching per node in Mij .

Problem 1 (Multiple Graph Alignment with Side Information). Given l graphs,G1(V1, E1),
. . . , Gl(Vl, El), where Vi and Ei are the node and edge sets of graph Gi, respectively,
with or without node/edge attributes, we seek to find the correspondence between their
nodes efficiently, so that the input graphs are as close to each other as possible.

To solve this problem, we propose HASHALIGN, an unsupervised method that is based
on three key ideas: (i) inferring the similarity between nodes in different graphs based
on structural properties and node/edge attributes; (ii) leveraging Locality Sensitive Hash-
ing (LSH) [7] to minimize the number of pairwise node comparisons; (iii) choosing a
‘center’ graph out of l input graphs to which to align all the others, thereby avoiding
solving

(
l
2

)
pairwise graph alignment problems (instead solving l − 1 alignments and

quickly inferring the remaining node correspondences by applying simple transforma-
tions in the form of sparse matrix multiplications). A pictorial overview of our method
is given in Fig. 1. Our main contributions are:
• Flexible Framework. We propose an efficient and accurate hashing-based fam-

ily of algorithms, HASHALIGN, which solves the multiple network alignment problem.
Our method is general and can readily incorporate any available node and edge at-
tributes. HASHALIGN can be used as a standalone alignment method or provide its
solution to initialize optimization problems for pairwise alignment (e.g., [4]).
•Methods. As part of our framework, we propose problem-specific choices of node

and graph features, and introduce a new, robust construction of hash families.
•Experiments. We conduct extensive experiments on synthetic and real data, which

show that HASHALIGN is 2-10× faster than the baselines that tackle either the multiple
or pairwise alignment problem, while being equally or up to 50% more accurate.

For reproducibility, the code is available at https://github.com/GemsLab/
HashAlign.git. Additional supplementary material is provided at https://
markheimann.github.io/papers/HashAlign-PAKDD18-full.pdf.

3

2 Related Work

We review work that is relevant to our problem space and choices of techniques:

Graph Alignment. Scalable methods for pairwise graph alignment include a distributed,
belief-propagation-based method for protein alignment [5], a message-passing algo-
rithm for aligning sparse networks when some [4] or all [19] possible matchings are
considered, alignment of bipartite networks [14,15], and attributed graph alignment [22].
Multiple network alignment, however, poses a further scalability challenge. For in-
stance, the recent optimization-based formulation of [17] solves a bipartite matching
problem in O(n3) time using the Hungarian algorithm and was only shown to scale to
small networks. Zhang and Yu [21] introduce the notion of transitivity between graphs
to align social networks more scalably, but also assume that some partial node match-
ings are provided (anchor links). Our method HASHALIGN preserves this notion of
transitivity for any type of network, while seamlessly incorporating node and edge at-
tribute information in intuitive, simple-to-implement, and highly scalable ways.

Locality-Sensitive Hashing. This technique for efficient similarity search has been
used to accelerate the well-known k-nearest neighbor algorithm, often offering theo-
retical and practical improvements even over sophisticated data structures such as k-d
trees [3]. It has also found use in matching problems in other domains, such as ontol-
ogy matching in information retrieval [9]. In our proposed method, we leverage LSH to
efficiently find nodes that are similar. For networks, [13] uses MinHash to find sets of
similar nodes in a single attributed graph by relying on the adjacency matrix as features,
but this is not applicable to the graph alignment setting. Thus, we introduce node-ID in-
variant representations and adapt LSH to find similarities across networks. Our contri-
bution is orthogonal to prior works: a framework for network alignment, HASHALIGN,
in which we propose design choices geared toward our specific domain.

3 Proposed Formulation: Two-Graph Alignment

In this section, we first introduce the alignment problem for two graphs. We then de-
scribe our proposed approach, and in the next section we extend it to the multiple graph
alignment problem. Table 1 summarizes the main notations used in our analysis.

Table 1: Symbols and definitions. We use bold capital letters for matrices, bold lowercase
letters for vectors and normal lowercase letters for scalars.

Symbols Definitions

Gp = (Vp, Ep) graph p with vertex set Vp and edge set Ep
|Vp| = np, |Ep| = mp number of nodes and edges in graphGp, resp.
sGp (v) 1× ds vector of the structural invariants (e.g., PageRank) for node v ∈ Gp

anGp (v),aeGp (v) 1× dan vector of node/edge attributes for node v ∈ Gp

AnGp
,AeGp

the stacked node/edge attr. matrices of size np × dan and np × np × dae

d = ds + dan + dae total number of (structural, node, and edge) features
fGp (v),FGp 1× d all-feature vec. for node v ∈ Gp and the resp. stacked np × d mat.
SIGGp 1× 5d graph ‘signature’ vector representing graphGp

d(Gi, Gj) distance between graphsGi andGj

Sij sparse ni × nj similarity matrix between graphGi andGj

Mij ni × nj alignment between graphGi andGj

bi bucket i (hashing)
Z number of bands (hashing)

4

3.1 Definition: Relaxed Two-Graph Alignment Problem

The typical graph alignment problem aims to find a one-to-one matching between the
nodes of two input graphs. This problem is important, but in many applications it suf-
fices to solve a relaxed version of it: finding a small set of nodes that are likely to
correspond to a given node. For example, when aligning social networks to improve
user recommendations, it is still useful to find the top-l most similar or likely-to-match
individuals and incorporate this probabilistic information in the recommender system.
Given this observation, we relax the original alignment problem as follows:

Problem 2 (Relaxed two-graph alignment). Given two graphs,G1(V1, E1) andG2(V2, E2),
which may be (un)directed, (un)weighted and attributed / plain, we seek to efficiently
find a sparse, weighted bipartite graph GS = (V1 ∪ V2, ES) with edges representing
potential matching pairs and being weighted by the likelihood of the match:

∀ potential matching pair (u, v), u ∈ V1, v ∈ V2,∃e ∈ ES : we = sim(u, v)

and |ES | < α ·max{n1, n2},

where α ∈ Z (α > 1) is a small factor that controls the density of GS .

To make sure that nodes are efficiently matched only to a few of their closest coun-
terparts, the main requirement in Problem 2 is that the weighted bipartite graph GS is
sparse, i.e., |ES | � n1 × n2. Most graph alignment methods find 1-1 matchings be-
tween the vertex sets [8,4], and a few approaches relax the requirements of the typical
optimization problem to find probabilistic matchings [15], but each method targets a
different type of graph (e.g., unipartite, undirected) and most of them rely only on the
network structure. In this work we propose a different, similarity-based approach that
encompasses all these settings. This approach is intuitive and leverages a suitably rich
node representation to achieve superior accuracy.

A naive similarity-based method is to: (i) compute all the pairwise similarities be-
tween the nodes inG1 and the nodes inG2, and (ii) keep only the edges with similarities
greater than a user-specified threshold. Although this approach results in a sparse graph
GS , it has several drawbacks. First, it is computationally expensive, since it computes
all pairs of similarities, i.e., n1 × n2 (which is big for large-scale networks), and later
applies the threshold for edge filtering. Second, the threshold is arbitrary and affects
the potential node matchings significantly. Third, among the possible options for repre-
senting the nodes, it is not clear how to choose the ‘right’ representation for similarity
computations. Our proposed approach, which is shown pictorially in Figure 1, leverages
hashing to overcome all these issues.

3.2 Node Representation: Handling Node and Edge Attributes

Our framework, HASHALIGN, requires a vector representation of each node. We want
these to be comparable across graphs and also leverage node/edge attributes seamlessly.

Fig. 2: Proposed feature-based, node-ID invariant
representation of vertex v.

We propose to represent each
node u with a vector f(u) of struc-
tural features and node/edge at-
tributes (if available). The benefit
of this representation is that it can

5

readily be adjusted to the type of the graphs and the richness of the available infor-
mation without any changes in the problem formulation. Furthermore, it is node-ID
invariant and can thus be meaningfully compared across graphs (where all nodes IDs
are different: node u ∈ V1 may have neighbors {u1, u2, u3} in G1, while a similar
node v ∈ V2 may have neighbors {v6, v8, v9} in G2). This is not true of representation
learning methods such as DeepWalk and node2vec, which use random walks to sample
context nodes by their IDs [10] and thus are not applicable to our multi-network prob-
lem setting [11]. Specifically, in Step 1 of our framework (Fig. 1), we concatenate ds
structural features, dan node attributes, and dae edge attributes:
• Structural features s ∈ R1×ds . Examples include the so-called local features (e.g.,
degree variants) and egonet features. The egonet of node u is defined as the induced
subgraph of u and its neighbors, and structural features specific to the egonet include its
number of edges, its degree, and more. In addition to these features, we also consider
features that combine locality with globality, such as PageRank and various types of
centrality. We choose specific structural features that are most robust to noise (Sec. 5.)
• Node attributes an ∈ R1×dan . If a graph contains node attributes, the node feature
vectors f can be extended to include those. Numerical features can be simply concate-
nated with the structural features, while categorical attributes can be incorporated by
using 1-hot encoding and concatenated to the previously formed feature vector.
• Edge attributes ae ∈ R1×dae . We propose converting numerical edge features to
node attributes by applying an aggregate function ξ : Edegu → R (where the domain
is the set of edges incident to u ∈ V and degu is its degree). Examples for ξ() include
sum, average, standard deviation, etc., which provide different edge-specific features
for each node. For categorical features, we propose to encode the distribution of values
per categorical feature. For example, if a feature has q possible values, then q entries
with their frequencies will be concatenated with the previous features.

3.3 Proposed Hashing-based Computation of Potential Matchings

Now we have, for each node u in graph Gp, a real-valued vector fGp
(u) ∈ Rd con-

structed as described in Section 3.2. We propose to use hashing, and specifically Local-
ity Sensitive Hashing (LSH) [7], in order to find a small number of potential matchings
between nodes across graphs (i.e., nodes with high similarity) in a scalable way, without
computing all pairs of n1 × n2 similarities. In a nutshell, given a similarity function,
LSH reduces the dimensionality of high-dimensional data while preserving their lo-
cal similarities; that is, it efficiently maps similar data points (in our case, nodes) to the
same buckets with high probability. Our proposed hashing approach for alignment takes
as input the FG1 ∈ Rn1×d feature matrix (with row-wise node representations) for G1

and FG2
∈ Rn2×d for G2, and hashes them row-wise using an LSH familyH.

Definition 1 (LSH-2G). Given V1 and V2, the nodes in graph G1 and G2 respectively,
along with a similarity function φ : Rd × Rd → [0, 1] ,H is an LSH-2G family of hash
functions such that the probability of two nodes u, v ∈ V1 hashing to the same bucket
is equal to their similarity, and additionally the probability of two nodes u ∈ V1 and
v ∈ V2 hashing to the same bucket is equal to their similarity: Pr[h(u) = h(v)] =
φ(fG1

(u), fG2
(v)).

6

We propose an LSH-2G family based on the standard measure of cosine similarity,
and describe another family based on Euclidean distance in the supplementary ma-
terial. We introduce SimHash-2G, a modified version of SimHash [3] that is based
on LSH-2G described above. SimHash-2G chooses K randomly generated column-
vectors {r1, . . . , rK} ∈ Rd that follow the standard Gaussian distribution (i.e., K
random hyperplanes). The LSH-2G family consists of K hash functions: hk(u) =
sign(fGp

(u) · rk). Each of these projects node u on either side of the random hy-
perplane rk (positive or negative sign). The low-dimensional representation of each
node u is its K-bit vector fproj(u) = [h1(u), . . . , hK(u)]. For random hyperplane k,
the probability of two nodes u ∈ V1 and v ∈ V2 being mapped to the same bucket
is Pr[hk(u) = hk(v)] = 1 − θuv

π , where θuv = cos−1
fG1

(u)fG2
(v)

‖fG1
(u)‖2‖fG2

(v)‖2 . The angle

1− θuv

π captures the proximity of u and v. SimHash-2G computes only the similarity for
pairs of nodes according to our proposed construction, SKD-construction (see below).

If a hash function hi ∈ H maps two nodes to the same bucket, that indicates that
they could be similar, but there is some probability of error. The technique of amplifi-
cation creates a new LSH family G with hash function g defined over the functions in
H = {h1, h2, . . . , hK}, in order to reduce that probability of error. A standard tech-
nique is AND-construction where g(u) = g(v) =⇒ ∀i hi(u) = hi(v).

However, the AND-construction is too strict and may lead to many false negatives
when finding node matchings. To ameliorate that we use the banding technique: (i) we
split each feature vector into Z equal bands, and (ii) per band z, we apply a correspond-
ing LSH-2G familyHz using AND-construction. In each band, a node can fall into only
one bucket, and thus collides with nodes in that same bucket (potential matchings). To
handle the observed skewed distribution of nodes to buckets and guarantee that each
node will have some potential matchings, we introduce the notion of ‘importance’ of a
node collision within a band and propose the SKD-construction.

Definition 2 (Importance σtot of node collision). Given two nodes u ∈ V1 and v ∈
V2, and an LSH-2G family H = {h1, . . . , hK} s.t. ∀j hj(u) = hj(v) (i.e., both nodes
are mapped to bucket bH), we define the importance of their collision based onH as the
inverse of the size of the corresponding bucket: σH(u, v) = 1

|bH| . The total importance
score of a node pair collision over all bands and their corresponding LSH familiesH′ =
{H1, . . .HZ} is defined as: σtot(u, v) =

∑
H∈H′ σH(u, v) · 1hj(u)=hj(v),∀hj∈H.

Intuitively, the importance of a collision is higher if a few nodes are mapped to a
bucket, as the bucket has higher discriminative power. The notion of importance tackles
the skewness that we observe in the mapped nodes in the graph alignment setting. Based
on this definition, we propose the SKD-construction (where SKD stands for SKeweD).

Definition 3 (SKD-construction). Given u ∈ V1 and v ∈ V2, and LSH-2G fami-
lies H′ = {H1, . . . ,HZ}, a new family G with hash function g is based on SKD-
construction:

if g(u) = g(v) =⇒ σtot(u, v) ∈ TOPα(u),

where TOPα(u) is the set of top-α total importance scores σtot(u, v′) for v′ ∈ V2, and
α is the small factor that controls the density of GS in Problem 2.

Intuitively, SKD-construction computes the pairwise similarities of nodes that col-
lide often (but not always, like AND-construction) and have important collisions that
manage to distinguish the nodes (i.e., it penalizes functions that lead to skewed results).

7

3.4 From Similarities to Matchings
As shown in Step 3 of Fig. 1, the hashing approach that we introduced returns a small
number of high similarities between the nodes of graphs G1 and G2, giving us an n1 ×
n2 sparse matrix S with node similarities. Here we provide ways to use the similarity
information in S to find the node matchings or correspondences M ∈ Zn1×n2 :
•Greedy matching: Assuming that the higher the similarity score, the more likely two
nodes are to match [15,22], we can greedily make independent decisions for the best
match of each node in G1 through a function χ : V1 → V2 s.t. χ(u) = argmaxv{Suv}.
Since nodes are matched independently, this is very efficient and parallelizable, but may
match more than one node in graph G1 to the same node in G2. It is a preferred method
for very large networks or networks of different sizes, and also when multiple potential
matchings are desired. In the latter case, it can be trivially extended by updating the
function χ() to return more top potential matchings (instead of only the best one).

Fig. 3: Node matching con-
sistency: If u = v and v =
w, then u should match to
w (by transitivity).

• Collective matching: An alternative is to leverage ex-
isting approaches that find 1-to-1 matchings collectively,
given a similarity matrix S. In Sec. 5 we consider scalable
options for doing so and study their trade-offs.

4 HASHALIGN: Multiple Graph Alignment
In this section, we extend our HASHALIGN framework to
multiple graph alignment and give a more formal definition
which extends the relaxed 2-graph alignment problem.

Problem 3 (Relaxed multiple graph alignment). Given a set of graphs, G =
{G1(V1, E1), . . . , Gl(Vl, El)}, which may be (un)directed, (un)weighted and attributed
/ plain, we seek to efficiently find a sparse, weighted bipartite graph GSij = (Vi ∪
Vj , ESij) for each pair of graphs <Gi, Gj>, s.t. ESij has the potential matching pairs
between their vertex sets and the weights describe how likely the nodes are to match.

Efficient Computation. The key insight to reduce computational cost is to use one
of the l graphs as the ‘baseline’ graph GC and align the remaining l − 1 graphs with
that, by applying the hash-based techniques of Section 3 to all the graphs in parallel.
This approach avoids computing O(l2) pairwise graph alignments, instead leading to
l − 1 matching matrices M2C , . . . ,MlC (w.l.o.g. we choose graph GC = G1 in our
notation, but we will explain next the choice of GC). Inspired by the idea of transitiv-
ity [21], which requires node matching consistency between pairs of graphs (Fig. 3), we
efficiently infer all the remaining matching matrices Mij (where i, j 6= C) via sparse
matrix multiplications (Step 4 in Fig. 1): Mij = MiC ·MT

jC .
Choice of GC . To reduce the induced alignment errors and their propagation to the in-
ferred matchings, we propose the ‘center’ graph (i.e., the graph in G with the minimum
total distance from the remaining graphs) as the baseline graph GC (Step 2 in Fig.1):

argminC
∑
j d(GC , Gj) =

∑
j ||SIGGC

− SIGGj
||2,

where d(GC , Gj) is the distance between GC and Gj , and SIG is a graph ‘signature’
(more details below). The intuition, which we have also found empirically, is that the
center graph is as close as possible to all the other graphs, and thus the quality of the

8

Algorithm 1 HASHALIGN
Input: (1) G={G1, G2, · · · , Gl}; (2) [OPT] Per graph i, node/edge attr. An×dan

nGi
/An×n×dae

eGi

Output: A set of matching matrices {Mij} for i, j ∈ {1, . . . , l}
1: /* STEPS 1&2: NODE REPRESENTATION AND CENTER DISCOVERY */
2: For G ∈ G do
3: FG = extractFeatures(G,An×dan

G ,A
n×n×dae
G) . Sec. 3.2

4: GC = findCenter(ξ(FG1), ξ(FG2), · · · , ξ(FGl)) . Eq. (4) & aggregate function ξ()=SIG

5: /* STEP 3: HASH-BASED SIMILARITY (assuming q buckets in total) */
6: {b1, . . . , bq} = SimHash-2G(FG1, . . . ,FGl) . Sec. 3.3 (or EDHash-2G in Appendix B)
7: {S1C ,S2C , · · · ,SlC} = computeSparseSimilarities(b1, . . . , bq) . SKD-construction

8: /* STEP 4: NODE MATCHING */
9: {M1C ,M2C , · · · ,MlC} = GREEDY or COLLECTIVE(S1C ,S2C , · · · ,SlC) . Sec. 3.4

10: For i, j ∈ {1, . . . , l} do
11: Mij = MiC ×MT

jC . Sec. 4

center-based alignments are more precise (e.g., there exist more nodes that match, and
the nodes are more similar) than the alignment based on any other graph in G.

Since HASHALIGN is feature-based, we propose to leverage the same features in
the graph signatures. A graph signature SIGGj

can be created by applying an aggregate
feature function ξ() over its nodes. For example, a simple graph signature could contain
average feature values: SIGGj

= f̄Gj
= mean{fGj

(u1), fGj
(u2), . . . , fGj

(unj
)}. In

our work, we collect the mean, median, standard deviation, skewness, and kurtosis of
each of the d features to form the graph signature, giving us a 5d-dimensional vector
(shown in Step 1 of Fig. 1).
Hash-based similarity. After hashing all the feature-based node vectors of all the
graphs in G as described in Sec. 3.3, we compute the similarity scores for possibly
matching pairs of nodes according to the SKD-construction. We only compute the sim-
ilarity between nodes in the center graph (right hand-side in the buckets in step 2 of
Fig. 1) and nodes in the peripheral, or non-center, graphs (left hand-side).
Putting everything together. We propose HASHALIGN, a fast, hash-based, multiple
graph alignment approach, which is described at a high level in Algorithm 1. The pic-
torial overview of HASHALIGN is given in Fig. 1, where Z =1 for simplicity. It con-
sists of four main steps: (i) node representation, (ii) ‘center’ graph identification, (iii)
hash-based similarity, and (iv) node matching. We note that in line 7 of Algorithm 1,
SimHash-2G is applied to l graphs simultaneously, i.e., it hashes their nodes in parallel.
Computational Complexity of HASHALIGN. Our framework makes two main substi-
tutions for computational savings. First, it replaces full pairwise similarity computations
that are quadratic in the number of nodes with hashing in only O(K · np · d) time for
graph Gp with np nodes, if we use K hash functions on d-dimensional feature vectors.
Second, it replaces all

(
l
2

)
pairwise network alignments with only l−1 pairwise network

alignments to a center graph (chosen in O(l2 · d) time), inferring the remainder with
sparse matrix multiplications. More details are given in the supplementary material.

5 Experimental Analysis
In this section, we seek to answer the following questions: (1) How robust is our frame-
work compared to baselines for different levels of noise in the graphs (both in the struc-
ture and node/edge attributes)? (2) How could HASHALIGN help existing alignment

9

methods perform better and how could these help our method? (3) How do our methods
scale when aligning multiple graphs collectively? We answer these questions on three
datasets, described in Table 2. We also include additional experiments, such as a sensi-
tivity analysis of HASHALIGN to different parameters, in the supplementary material.
Baselines. We consider 3 baseline methods commonly used in the literature: NetAlign
[4], Final [22], and IsoRank [19]. We compare their performance against our method,
HASHALIGN, where we infer alignments greedily from the hashing-based node simi-
larities. The baselines accept a matrix L representing prior alignment information be-
tween the nodes of the original graphs. By default, we provide a thresholded similar-
ity matrix based on the node attributes to assure good performance based on the at-
tribute information, even for the baselines that are not formulated for it (NetAlign
and IsoRank). We also consider two variants of HASHALIGN, namely HASHALIGN-
NA and HASHALIGN-FN, which instead provide NetAlign and Final respectively
with the similarity matrix S from HASHALIGN, so that these methods infer alignments
from the node similarities as the final step of HASHALIGN (Sec. 3.4).

Data. We evaluate our proposed algorithms on three datasets along with the synthetic
data that we generated from them (via permutations and added noise, as in [15,22]).
Formally, given a graph G1 with adjacency matrix A, we create a noisy graph G2 with
matrix B = PAP> (i.e., a permutation of itself), where P is a randomly generated
permutation matrix (i.e., with one nonzero entry per row / column). Synthetic noise is
applied to both graph structure and labels throughout our experiments to simulate real-
world scenarios where the graphs are matchable but reasonably different. The noise
level p indicates that with probability p, Gaussian noise with std = 1 is added to an
edge weight; a binary edge label is flipped; or a categorical node / edge label is changed
to another value.

Table 2: Description of real datasets.
Datasets # Nodes # Edges Graph Type Labels Description

Connectome [1] 941 9,622 Undirected - fMRI-inferred graphs
E-mail [2] 1,133 5,451 Undirected 5 email communications
DBLP [22] 42,252 210,320 Undirected 1 coauthorship network

Evaluation Metric. Following the literature, we compute the alignment accuracy as
correct matchings
total matchings , where the total number of matchings between Gi and Gj is equal to

the minimum number of nodes between the two graphs, min{ni, nj} (which is the
number of available ground truth matchings.)

Experimental setup. In our experiments, we used the following structural attributes:
degree, node betweenness centrality, PageRank, egonet degree, average neighbor de-
gree, and egonet connectivity. We chose these attributes since they are robust to noise
and thus, they are expected to help with aligning two graphs (which are often seen as
noisy permutations of each other). More details are given in the supplementary material.

To test the ability of HASHALIGN to incorporate different kinds of features, we
also generate synthetic node/edge attributes, if none are available in the real data. For
each noise level p, we generate 3 pairs of graphs and report the average accuracy (along
with a 95% confidence interval). HASHALIGN is implemented in Python2.7, and the
structural feature extraction is based on SNAP [16]. We ran the experiments on Intel(R)
Xeon(R) CPU E5@ 3.50GHz and 256G RAM.

10

(a) E-mail data with 1 node attribute (b) E-mail data with 5 node attributes

Fig. 4: E-mail dataset (experimental results on other datasets are similar): Effectiveness
w.r.t noise on both attributes and the graph structure. Methods based on the HASHALIGN
framework achieve highest accuracy, particularly with limited node attribute information.

(a) Runtime vs. accuracy for multiple graph alignment on four unattributed
(on the left) and five attributed (on the right) graphs.

(b) Scalability of HASHALIGN.

Fig. 5: (a) HASHALIGN has stable efficiency across different kinds of networks. Final is
fast, but its accuracy is subject to whether node/edge labels exist. (b) HASHALIGN scales
linearly in terms of alignment with the center graph.
5.1 HASHALIGN: Accuracy and Runtime
Two-Graph Alignment. We conducted alignment of pairs of graphs on all the datasets
(with G1 the real graph and G2 its noisy permutation at noise level p, generated as
described above) and got consistent results. Only the result from the E-mail network
is shown for brevity. With only 1 binary attribute (Fig. 4a), NetAlign and IsoRank
perform poorly because the similarity matrix L built using just 1 attribute is not informa-
tive enough. However, these methods work significantly better as part of our framework,
as indeed all HASHALIGN variants achieve superior results as noise levels increase. We
note that in Fig. 4b, HASHALIGN-NA achieves perfect results in the presence of 5 node
attributes. However, all methods perform essentially perfectly, since with abundant node
attribute information, the alignment problem becomes much easier.
Multiple Graph Alignment. We evaluate HASHALIGN against other methods for mul-
tiple graph matching. The two datasets we experimented with include five connectome
networks [1] without any labels, and four DBLP co-author networks extracted from the
whole DBLP dataset following the settings in [22]. The DBLP coauthor networks have
one categorical label, describing the most frequent conference that an author attends.
Both experiments are conducted with p = 2% noise.

Figure 5a shows how different methods perform in terms of efficiency and accu-
racy. When there is no label information to help guide the alignment process (i.e.,

11

in the case of connectomes), HASHALIGN achieves best accuracy with short running
time for peripheral-center graph pairs alignment, followed by HASHALIGN-FN and
HASHALIGN-NA. As for the DBLP networks, since the label with 29 distinct values is
very discriminative, Final can achieve very good efficiency, while HASHALIGN and
its variants also have comparable performance. However without node labels, Final
matches less than 10% of all node pairs, which can be boosted to over 60% if we feed
it the hash-based similarity matrices of HASHALIGN. Pairwise graph alignment is the
most computationally expensive for large numbers of graphs (see Fig. 5b), but for fewer
graphs of the sizes in Fig. 5a, computing all pairwise alignments yields the highest ac-
curacy, and is thus our recommendation if computational resources are not an issue.
However, center graph alignment (the ‘derived’ versions of HASHALIGN variants) of-
ten still outperforms the baselines, and in some cases matches the accuracy of the full
pairwise comparisons (e.g., HASHALIGN-NA on the connectome data.)

These results clearly show that HASHALIGN leads to significant improvement over
existing methods with regard to both accuracy and runtime. In summary, we see that
on average, HASHALIGN (including its variants) are 2× faster and 10 to 20% more
accurate than the baselines in pairwise alignment, and 2× faster while up to 50% more
accurate in multiple graph alignment. However, these existing methods may have their
place within our framework (see Step 4 of Fig. 1), where they may be used to accurately
infer alignments from the hashing-based node similarities.

5.2 HASHALIGN: Scalability

A scalability test is conducted to verify that the proposed method scales as the number
of graphs grows. For this purpose, we generated up to 64 synthetic graphs from the
aforementioned connectome network with p = 0.02 noise, Z= 2 and K = 40. As
shown in Fig. 5b, HASHALIGN’s runtime scales linearly in terms of alignment with the
center graph. The runtime for deriving the peripheral graph alignments (i.e., w/o the
center graph) using sparse matrix multiplication scales subquadratically, as the slope
indicates. We omitted the runtime for feature extraction as it is linear on the number of
graphs, and does not contribute much to the runtime.

6 Conclusions
We study the problem of multiple graph alignment and propose HASHALIGN, an intu-
itive, fast and effective similarity-based approach that readily handles any type of input
graph. Our method adapts LSH to graph alignment, with a new construction technique
and an appropriate node-ID-invariant node representation for this task. Leveraging the
rule of matching transitivity, it scales up to many graphs while avoiding solving the ex-
pensive alignment task for each pair of graphs separately. Our experiments on real data
(incl. sensitivity analysis in the supplementary material) show that HASHALIGN can
stand alone as a multi-network alignment tool or be combined with existing methods
that require a small set of possible matchings as input. In most cases, it is more accurate,
more robust to noise, and/or faster than the baselines. Our work suggests that hashing
is a promising direction for scaling up network alignment. Future work could include
extending HASHALIGN to use learned node representations specifically designed for
multi-network problems, as in the very recent work of [12]. Here one challenge would
be devising suitable graph signatures for efficient multiple graph alignment.

12

Acknowledgements
This material is based upon work supported in part by the National Science Foundation
under Grant No. IIS 1743088, and the University of Michigan. Any opinions, findings,
and conclusions or recommendations expressed in this material are those of the au-
thor(s) and do not necessarily reflect the views of the National Science Foundation or
other funding parties. The U.S. Government is authorized to reproduce and distribute
reprints for Government purposes notwithstanding any copyright notation here on.
References

1. COBRE. http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html, 2012.
2. Konect: Koblenz network collection. http://konect.uni-koblenz.de/networks/, 2016.
3. A. Andoni and P. Indyk. Near-optimal hashing algorithms for approximate nearest neighbor

in high dimensions. In FOCS. IEEE, 2006.
4. M. Bayati, D. F. Gleich, A. Saberi, and Y. Wang. Message-Passing Algorithms for Sparse

Network Alignment. ACM TKDD, 7(1):3:1–3:31, Helen Martin 2013.
5. S. Bradde, A. Braunstein, H. Mahmoudi, F. Tria, M. Weigt, and R. Zecchina. Aligning graphs

and finding substructures by a cavity approach. Europhysics Letters, 89, 2010.
6. I. Brugere, B. Gallagher, and T. Y. Berger-Wolf. Network structure inference, A survey:

Motivations, methods, and applications. CoRR, abs/1610.00782, 2016.
7. M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni. Locality-sensitive hashing scheme

based on p-stable distributions. In SCG, pages 253–262. ACM, 2004.
8. C. H. Q. Ding, T. Li, and M. I. Jordan. Nonnegative Matrix Factorization for Combinatorial

Optimization: Spectral Clustering, Graph Matching, and Clique Finding. In ICDM, 2008.
9. S. Duan, A. Fokoue, O. Hassanzadeh, A. Kementsietsidis, K. Srinivas, and M. J. Ward.

Instance-based matching of large ontologies using locality-sensitive hashing. In ISWC.
Springer, 2012.

10. P. Goyal and E. Ferrara. Graph embedding techniques, applications, and performance: A
survey. arXiv preprint arXiv:1705.02801, 2017.

11. M. Heimann and D. Koutra. On generalizing neural node embedding methods to multi-
network problems. In KDD MLG Workshop, 2017.

12. M. Heimann, H. Shen, and D. Koutra. Node representation learning for multiple networks:
The case of graph alignment. arXiv preprint arXiv:1802.06257, 2018.

13. K. U. Khan, W. Nawaz, and Y. K. Lee. Set-based unified approach for attributed graph
summarization. In IEEE BDCC, Dec 2014.

14. D. Koutra and C. Faloutsos. Individual and collective graph mining: Principles, algorithms,
and applications. Synthesis Lectures on Data Min. Knowl. Discov., 9(2):1–206, 2017.

15. D. Koutra, H. Tong, and D. Lubensky. Big-Align: Fast Bipartite Graph Alignment. In ICDM.
IEEE, 2013.

16. J. Leskovec and R. Sosič. Snap: A general-purpose network analysis and graph-mining
library. ACM TIST, 8(1):1, 2016.

17. E. Malmi, S. Chawla, and A. Gionis. Lagrangian relaxations for multiple network alignment.
Data Mining and Knowledge Discovery, pages 1–28, 2017.

18. T. Safavi, C. Sripada, and D. Koutra. Scalable hashing-based network discovery. In ICDM.
IEEE, 2017.

19. R. Singh, J. Xu, and B. Berger. Global alignment of multiple protein interaction networks
with application to functional orthology detection. PNAS, 105 35:12763–8, 2008.

20. L. Zager and G. Verghese. Graph Similarity Scoring and Matching. Applied Mathematics
Letters, 21(1):86–94, 2008.

21. J. Zhang and P. S. Yu. Multiple anonymized social networks alignment. In ICDM. IEEE,
2015.

22. S. Zhang and H. Tong. Final: Fast attributed network alignment. In KDD. ACM, 2016.

http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html
http://konect.uni-koblenz.de/networks/

1

Supplementary Material

A Additional Related Work

In this Appendix, we provide an overview of some additional related works, which
complement the discussion in Section 2. Specifically, we discuss some more existing
formulations and methods for solving the problem of aligning pairs of graphs. We also
describe some existing measures of node similarity in more detail, as this concept is
relevant to our work.
Pairwise Graph Alignment. One of the most common formulations for aligning two
graphs G1 and G2, with adjacency matrices A1 and A2, is to find a matrix P that
permutes the nodes in A1 so that it best matches A2: minP ||PA1P

T −A2||2F , where
|| • ||F is the Frobenius norm of the corresponding matrix. The original requirement is
that P is a permutation matrix (i.e., a square binary matrix with exactly one entry 1 per
row and column, and 0s elsewhere), but several convex or concave relaxations to this
problem have been proposed, such as P being a (doubly) stochastic matrix [29].

The Hungarian method [28] is a well-known spectral method for solving this for-
mulation, but it requires graphs of the same size n and is computationally expensive,
O(n3), and thus inapplicable to large-scale networks. Other suggested solutions vary:
clustering algorithms [26], graph edit distance [27], iterative HITS-inspired [20], and
more. Like the Hungarian method, however, most of these methods align pairs of graphs
and do not necessarily scale well to large-scale graph alignment; in general, they are de-
signed for more limited uses cases than HASHALIGN.
Node Similarity. There are many different ways of computing similarity scores be-
tween nodes, most of which operate on a single network (e.g., Personalized Random
Walks [23], SimRank [24], and Belief Propagation [25]). Across two graphs, [15] and
[4] use (weighted) degree-based node similarities to initialize the alignment matrix.
Zager and Verghese [20] compute the similarity between two graphs via a recursive
method that couples the similarity scores of nodes and edges. Unlike our work, the
alignment in [20] is found after computing the similarity between all pairs of nodes, as
well as all pairs of edges.

B Euclidean Distance as an LSH family for HASHALIGN

In our main method (Sec.3.3), we introduce an LSH family based on cosine similarity.
Here we also introduce EDHash-2G, which is based on Euclidean distance (ED) as the
measure of (dis)similarity and is preferred when the dimensionality of the node vectors
d is quite high. However, in our experiments, we report results using SimHash-2G since
it ties or outperforms EDHash-2G (Sec. E).

At a high level, the corresponding hash functions compute the projections of the
input vectors on random lines. More formally, given a real number w, the kth hash
function is constructed so that it maps a real-valued vector in Rd into an integer (which
corresponds to a ‘segment’ ID):

hrk,bk(u) = b
fGp

(u) · rk + βk

w
c,

2

where rk is the corresponding column-vector in Rd with entries chosen independently
from a Gaussian distribution (which is 2-stable [7]) and βk is positive real number cho-
sen uniformly from [0, w]. If the nodes u ∈ V1 and v ∈ V2 map to the same w-long
‘segment’, they are considered similar, and their similarity is computed basd on the
SKD-construction. The ED between two nodes is then proportional to the probability
of them falling into the same ‘segment’. Among the ways to convert a distance to simi-
larity, we choose sim = (1 + ED)−1, which gives bounded similarity scores in [0, 1].

C Computational Complexity of HASHALIGN

In this section, we provide some more detail on the computational complexity of our
proposed framework, HASHALIGN. The analysis is divided by step: (1) During the
node representation phase, HASHALIGN extracts d-dimensional structural and node/edge
attribute features in each of the l graphs. The complexity of this phase depends on the
selected features (e.g., forGp, the degree computation takesO(mp), while the between-
ness centrality O(np ·mp)). (2) The cost of finding the center graph from the l graphs
to align is O(l2 · d). The remaining steps can be parallelized per graph, so we report
complexity analysis in terms of the size of the largest graph. (3) The hashing-based sim-
ilarity computation consists of two parts: For K hashing functions and bucket size |bi|,
the complexity of hashing is O(K ·maxp np · d) for graph Gp with np nodes. (4) For
node matching, the similarity matrix must be constructed by computing the σtot scores
over pairs of nodes in the same bucket in timeO(maxi |bi|2). Then the greedy approach
finds the maximum element for each of the np nodes in at most O(n2p) time. In the case
of multiple network alignment, we replace the expensive computation of pairwise simi-
larity score and simply perform sparse matching matrix multiplications (with the center
graph).

D Choice of Node Features for HASHALIGN

Fig. 6: Degree is robust, but eccentricity is sensitive to noise.

Since we believe that the
inconsistency between graphs
could be considered noise,
the more stable the fea-
tures are in the presence of
noise, the better. Thus, we
choose our node features
after seeing that their dis-
tributions have little differ-
ence before and after adding noise to the graph. An example of a feature that is robust
and one that is sensitive to noise is given in Fig. 6.

E HASHALIGN: Sensitivity Analysis

We provide additional analysis in this section to find out the patterns behind the vari-
ous combinations of parameters in the synthetic graphs and LSH functions. The tuning

3

(a) Number of random hyperplanes K
in SimHash-2G.

(b) Thresholdα used in computing sim-
ilar pairs.

(c) Efficiency with respect to the num-
ber of bands Z.

Fig. 7: Sensitivity analysis of HASHALIGN to parameters.

parameters for SimHash-2G / EDHash-2G are: the number of hash functions (or hyper-
planes) K, the threshold α for computing the similarity of node pairs, and the number
of bands Z. In Fig. 7, we present the results of a series of comprehensive experiments
which vary these parameters. Based on these, we have the following observations:

– As shown in Fig. 7b, a higher threshold α leads to similar accuracy but potentially
longer runtime. Computing pairwise similarity between 10 and 20% of the total
number of nodes gives the best trade-off between runtime and accuracy.

– The number of node attributes or the length of feature vectors determines the per-
formance of LSH. Given more features, LSH will generate more buckets, which
decreases the runtime of filtering colliding nodes pairs and increases accuracy.

– In terms of choice of different types of LSHs, SimHash-2G (based on cosine sim-
ilarity) tends to yield better randomness than EDHash-2G, while keeping runtime
low. This is why we chose it for our other experiments. In Fig. 7c, we used segments
of length w = 4 for EDHash-2G.

– The fewer bands, the better: more bands lead to roughly quadratic growth in run-
time, since (1) there are more buckets from different bands to merge, and (2) there
are fewer features in each band, making it easier for two nodes to collide (Fig. 7c).

References

23. T. H. Haveliwala. Topic-Sensitive PageRank: A Context-Sensitive Ranking Algorithm for
Web Search. TKDE, 15(4):784–796, 2003.

24. G. Jeh and J. Widom. SimRank: A Measure of Structural-Context Similarity. In KDD, pages
538–543. ACM, 2002.

25. D. Koutra, T.-Y. Ke, U. Kang, D. H. Chau, H.-K. K. Pao, and C. Faloutsos. Unifying Guilt-
by-Association Approaches: Theorems and Fast Algorithms. In ECML PKDD, pages 245–
260, 2011.

26. H. Qiu and E. R. Hancock. Graph Matching and Clustering Using Spectral Partitions. IEEE
TPAMI, 39(1):22–34, 2006.

27. K. Riesen and H. Bunke. Approximate Graph Edit Distance Computation by Means of
Bipartite Graph Matching. Image and Vision Computing, 27(7):950 – 959, 2009.

28. S. Umeyama. An Eigendecomposition Approach to Weighted Graph Matching Problems.
IEEE TPAMI, 10(5):695–703, 1988.

29. M. Zaslavskiy, F. Bach, and J.-P. Vert. A Path Following Algorithm for the Graph Matching
Problem. IEEE TPAMI, 31(12):2227–2242, Dec. 2009.

	HashAlign: Hash-based Alignment of Multiple Graphs
	Introduction
	Related Work
	Proposed Formulation: Two-Graph Alignment
	Definition: Relaxed Two-Graph Alignment Problem
	Node Representation: Handling Node and Edge Attributes
	Proposed Hashing-based Computation of Potential Matchings
	From Similarities to Matchings

	HashAlign: Multiple Graph Alignment
	Experimental Analysis
	HashAlign: Accuracy and Runtime
	HashAlign: Scalability

	Conclusions
	Additional Related Work
	Euclidean Distance as an LSH family for HashAlign
	Computational Complexity of HashAlign
	Choice of Node Features for HashAlign
	HashAlign: Sensitivity Analysis

