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ABSTRACT

Knowledge graphs (KGs) store highly heterogeneous information
about the world in the structure of a graph, and are useful for tasks
such as question answering and reasoning. However, they often
contain errors and are missing information. Vibrant research in KG
refinement has worked to resolve these issues, tailoring techniques
to either detect specific types of errors or complete a KG.

In this work, we introduce a unified solution to KG character-
ization by formulating the problem as unsupervised KG summa-
rization with a set of inductive, soft rules, which describe what is
normal in a KG, and thus can be used to identify what is abnor-
mal, whether it be strange or missing. Unlike first-order logic rules,
our rules are labeled, rooted graphs, i.e., patterns that describe
the expected neighborhood around a (seen or unseen) node, based
on its type, and information in the KG. Stepping away from the
traditional support/confidence-based rule mining techniques, we
propose KGist, Knowledge Graph Inductive SummarizaTion, which
learns a summary of inductive rules that best compress the KG
according to the Minimum Description Length principle—a formu-
lation that we are the first to use in the context of KG rule mining.
We apply our rules to three large KGs (NELL, DBpedia, and Yago),
and tasks such as compression, various types of error detection,
and identification of incomplete information. We show that KGist
outperforms task-specific, supervised and unsupervised baselines
in error detection and incompleteness identification, (identifying
the location of up to 93% of missing entities—over 10% more than
baselines), while also being efficient for large knowledge graphs.
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1 INTRODUCTION

Knowledge graphs (KGs), such as NELL [9], DBpedia [5], and Yago
[46], store collections of entities and relations among those entities
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Figure 1: KGist summarizes a KG (left) by finding patterns that can

be interpreted as rules (right). For instance, the rule that books are

written by authors, who are born in countries, which holds in two

out of three cases in this KG (Frankenstein is missing an author),

correctly describes books in general. However, the opposite pattern

does not: while Leo Tolstoy writes books, Emily Dickinson writes po-

ems. The summary of rules characterizes what is normal in a KG,

while simultaneously revealing what is strange and missing, such
as the erroneous and missing edges around Frankenstein.

(Fig. 1), and are often used for tasks such as question answering,
powering virtual assistants, reasoning, and fact checking [6, 21, 31,
44]. Many KGs encode encyclopedic information, i.e., facts about
the world, and are, to a large degree, automatically built [31]. As a
result, they contain many types of errors, and are missing edges,
nodes, and labels. This has led to a significant amount of research
on KG refinement, resulting in task-specific methods that either
identify erroneous facts or add new ones [35]. While the accuracy
of KG tasks may be improved by refinement, KGs grow to the order
of millions or billions of edges, making KGs more inaccessible to
users [21], and tasks over them more computationally difficult [31].

As refinement helps address accuracy issues, graph summariza-
tion [26] can help address KG size issues by describing a graph with
simple and concise patterns. However, KG-specific summarization
[53] focuses mostly on query- or search-related summaries [41, 45,
50], while most general-graph summarization work is designed
for purposes other than KG refinement, and aims to compress a
graph by grouping together similarly linked and similarly labeled
nodes. These summaries would only cluster existing information
in a KG, but encyclopedic KGs will always be missing facts (since
the world’s information is unbounded).

Thus, we introduce the problem of inductive KG summarization,
in which, given a knowledge graphG , we seek to find a concise and
interpretable summary ofG with inductive rules that can generalize
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to the parts of the world not captured by G . With this characteriza-
tion of the norm, we can also identify what is strange in and what
is missing from G: the parts of the graph that violate the rules or
remain unexplained by the summary. These strange parts of the
graph may be genuine exceptions, errors, or missing information.
To solve the problem, we propose KGist, an information-theoretic
approach that serves as a unified solution to summarization and
various KG refinement tasks, which have traditionally been viewed
independently.

Our main contributions are summarized as follows:
• Problem Formulation. Rather than targeting a specific re-

finement task (e.g., link prediction), we unify various refinement
tasks by joining the problems of refinement and unsupervised sum-
marization, and introduce the notion of inductive summarization
with soft rules that plausibly generalize beyond the KG. § 3
• Expressive rules. While current methods (§ 2) learn first-

order logic rules that have single-element consequences, which
predict single edges, our rules are labeled, rooted graphs that are
recursively defined, allowing them to describe arbitrary graph struc-
ture around a node (i.e., they can have complex consequences). Our
formulation of rules takes a step towards treating knowledge graphs
as graphs—something often overlooked in KG refinement [35]. § 3
• MDL-based approach. We introduce KGist, an unsuper-

vised, information-theoretic approach that identifies rules via the
Minimum Description Length (MDL) principle [38], going beyond
the support/confidence framework of prior work. § 4
• Experiments on real KGs. We perform extensive experi-

ments on large KGs (NELL, DBpedia, Yago), and diverse tasks, in-
cluding compression, various types of error detection, and identi-
fying the absence of nodes. We show that KGist learns orders of
magnitude fewer rules than current methods, allowing KGist to be
efficient and effective at diverse tasks. KGist identifies the location
of 76-93% of missing entities—over 10% more than baselines. § 5
Our code and data are available at https://github.com/GemsLab/KGist.

2 RELATEDWORK

2.1 Knowledge Graph Refinement

KG refinement attempts to resolve erroneous or missing informa-
tion [35, 36]. Next, we discuss the three most relevant categories
of refinement techniques (although other methods exist, such as
crowd-sourcing-based methods [23]).

2.1.1 Rule-mining-based Refinement. These approaches are rem-
iniscent of association rule mining [2]. AMIE [18] introduces an
altered confidence metric based on the partial completeness assump-
tion, according to which, if a particular relationship of an entity
is known, then all relationships of that type for that entity are
known (as opposed to the open-world assumption, which assumes
that an absent relationship could either be missing or not hold
in reality). AMIE+ [17] is optimized to scale to larger KGs, and
Tanon et al. [47] seek to acquire and use counts of edges to measure
the incompleteness of KGs. Other, non-rule-mining-based meth-
ods have also been proposed for measuring KG quality [22, 37].
A supervised approach that augments AMIE+ [16] takes example
complete and incomplete assertions (e.g., crowd-sourced) as train-
ing data, and predicts completeness of predicate types observed

during training. These works focus on refinement and find Horn
rules on binary predicates. In contrast, we focus on summarization,
and our rules can be applied to a node, knowing only its type. Also,
we go beyond the support/confidence framework, which treats KGs
as a table of transactions, and take a graph-theoretic view instead.
One work that does take a graph-theoretic view learns rules in a
bottom-up fashion by sampling paths from the KG, but the rules
are constrained to be path-based Horn-rules [28]. Graph-Repairing
Rules (GRRs) [10] have also been proposed to target the specific
problems of identifying incomplete, conflicting, and redundant in-
formation in graphs. They focus on simple graphs, whereas KGs
contain multi-edges [31], multiple labels per node (Tab 2), and self-
loops. GRRs were preceded by less expressive association rules with
graph patterns [14] and functional dependencies for graphs [15].
Rule-mining also has applications beyond KG refinement, such as
recommender systems [27]. Our rules could potentially be used in
these scenarios, but we leave that for future work.

2.1.2 Embedding-based Refinement. KG embedding approaches
seek to learn representations of nodes and relations in a latent space
[49], spanning from tensor factorization-based methods [32, 33]
to translation-based methods such as TransE [8] and semantic
matching models such as ComplEx [48]. These works often perform
link prediction, which is useful for completing relationships among
entities, but only predicts links between entities already in the KG.
In contrast, KGist can identify the absence of entities from the KG.

2.1.3 Hybrid Refinement. Recent refinement methods improve link
prediction performance by iteratively applying rule mining and
learning embeddings. For instance, pre-trained embeddings have
been used to more accurately measure the quality of candidate
rules [20]. In [52], facts inferred from rules improve embeddings
of sparse entities, and in turn embeddings improve the efficiency
of rule mining. Unlike these works, we focus on unifying different
refinement tasks, going beyond link prediction.

2.2 Graph Summarization

Graph summarization seeks to succinctly describe a large graph in a
smaller representation either in the original or a latent space [24, 26].
Much of the work on knowledge graph summarization has focused
on query-related summaries, such as query answer-graph sum-
maries [50], patterns that can be used as query views to improve KG
search [13, 45], and sparse, personalized KG summaries—based on
historical user queries—for use on personal, resource-constrained
devices [41]. While our summaries could conceptually be used for
query-related problems, we focus on the problem of characterizing
what is normal, strange, and missing in a KG. We also construct
summaries with patterns that generalize, which is not considered
by [45]. Similar to summarization, Boded et al. [7] use MDL to
assess KG evolution, but they do not target refinement. Beyond
KGs, MDL has been used to summarize static and temporal graphs
via structures, such as cliques, stars, and chains [19, 25, 30, 42],
or frequent subgraphs [34] (also studied from the perspective of
subgraph support [12]). Unlike these works, we learn inductive
summaries of recursively defined rules or rooted graphs, which
incorporate both the KG structure and semantics, and can be used
for graph refinement.

https://github.com/GemsLab/KGist
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Table 1: Description of major symbols.

Notation Description

G(V, E) knowledge graph
A, L binary adjacency tensor and label matrix of G , resp.
M,M0 model or set of rules, and the empty model, resp.
L(.) # of bits to transmit an object (e.g., a graph or rule)
д rule in the form of a graph pattern
A(д), A(д)c , A(д)ξ assertions, correct assertions, exceptions of д, resp.
|. | set cardinality and number of 1s in tensor/matrix

3 INDUCTIVE SUMMARIZATION: MODEL

In this section we describe our proposed MDL formulation for
inductive summarization of knowledge graphs, after introducing
some preliminary definitions. We list the most frequently used
symbols in Table 1, along with their definitions.

3.1 Preliminaries

3.1.1 Knowledge Graph (KG) G. A KG is a labeled, directed
graph G = (V, E,LV ,LE,ϕ), consisting of a set of nodes or enti-
ties V , a set of relationship types LE , a set of edges or triples
E ∈ V × LE × V , a set of node labels LV , and a function
ϕ : V → P(LV ) mapping nodes to their labels, the set of which
we call the node’s type. We give an example KG in Fig. 1. An edge or
triple t = (s,p,o) connects the subject and object nodes s,o ∈ V via
a relationship type (predicate) p ∈ LE . An example is (War & Peace,

writtenBy, Leo Tolstoy). Triples encode a unit of information or
fact, semantically about the subject. Since a pair of nodes may have
multiple edges between them, we represent the connectivity of G
with a |V| × |V| × |LE | adjacency tensor A. Similarly, we store
the label information in an |LV | × |V| binary label matrix, L.

3.1.2 Ideal Knowledge Graph Ĝ. An ideal knowledge graph
Ĝ(V̂, Ê, L̂V , L̂E, ϕ̂) contains all the correct facts in the world and
no incorrect ones, i.e., (s,p,o) ∈ Ê if and only if the fact holds in
reality. An ideal KG is only a conceptual aid, and does not exist,
since KGs have errors and missing information.

3.1.3 Model M of a KG. A model M of a KG is a set of inductive
rules, which describe its facts (see formal definition in § 3.1.4). In
§ 3.2, we will explain a model in the context of our work.

3.1.4 Rule д. A rule д ∈ M is defined recursively and composition-
aly. Specifically, rule д = (Lд, χд) is a rooted, directed graph, with
a subset of node labels Lд ⊆ LV defining д’s root, and a set of
children χд . Each child in χд is of the form (p, δ , д̂) consisting of
a predicate p (e.g., writtenBy), the directionality δ of the rule (i.e.,
→ or ←), and a descendent rule д̂. A leaf rule has no children,
i.e., дleaf = (Lд, ∅). An atomic rule consists of one root with a sin-
gle child (e.g., ({Book}, {writtenBy,←, ({Author}, ∅)})), since all rules
can be formed from compositions of these. Rule д in Fig. 2 (which
reads, Books have fictional family characters and are written

by authors who are born in countries.), rooted at Book, consists of
three atomic rules, has root Lд = {Book} and two children χд (for
clarity we omit the braces for sets): (writtenBy,→, (Author, (bornIn,
→, ( Country, ∅)))) and (character,←, (Fictional Family, ∅)).

Figure 2: An example rule and one of its correct assertions. The

correct assertion is a traversal starting at War & Peace because it

is a Book (root), and following the rule’s syntax to induce a sub-

graph (line styles denote edge types). For instance, the first child

of the rule lexicographically is (character, ←, ({Fictional Family},

∅)), which would be traversed recursively if it were not a leaf rule.

This part of the rule asserts that books have one or more Fictional

Family characters. During the traversal, every neighboring node that

matches the rule’s syntax is traversed (e.g. all the fictional families

are visited). Traversals from all Book nodes constitute A(д). If a node

lacks a neighbor asserted by the rule (e.g. if Leo Tolstoy had no bornIn

edge), then it is an exception.

3.1.5 Rule Assertion aд . An assertion aд of a rule д = (Lд, χд)
over the KG G is an instantiation of the edges and labels that д as-
serts around a particular node, and is reminiscent of a rule grounding
[28]. The set of all assertions of rule д isA(д). Formally, aд ∈ A(д)
is a subgraph induced by a traversal that starts at a node saд ∈ V
with at least the same labels as Lд (i.e., Lд ⊆ ϕ(saд )), and that
recursively follows д’s syntax. For example, War & Peace is the start-
ing node saд of one assertion of the rule in Fig. 2. If the traversal
fails to match the syntax of the rule at any point, then we call it
an exception of д, in which case the assertion is just the node
saд ≡ aд that violates the rule. Otherwise the induced subgraph

is called a correct assertion of д. Formally, A(д)c and A(д)ξ are
the set of д’s correct assertions and exceptions respectively. Every
assertion is either a correct assertion or an exception, so A(д)c and
A
(д)
ξ form a partition of A(д).

3.1.6 MinimumDescription Length (MDL) Principle. In two-
part (crude) MDL [39], given a set of modelsM, the best model
M ∈ MminimizesL(M)+L(D|M), whereL(M) is the length (in bits)
of the description ofM , and L(D|M) is the length of the description
of the data when encoded usingM . In our work, we leverage MDL
to concisely summarize a given KG.

3.1.7 Problem Definition. Because both errors and missing in-
formation are instances of abnormalities, we unify KG characteriza-
tion in terms of what is normal, strange, and missing, as follows:

Problem 1 (Inductive KG Summarization). Given a knowledge
graphG , and an inaccessible ideal knowledge graph Ĝ, we seek to find
a concise modelM∗ of inductive rules that summarize what is normal
in both G and Ĝ. The rules should be (1) interpretable (by which we
mean readable in natural language) and, (2) their exceptions should
reveal abnormal information in the KG, whether it be erroneous (e.g.,
some t ∈ E : t < Ê), missing (e.g., some t ∈ Ê : t < E), or a legitimate
exception (e.g., some t ∈ E : t ∈ Ê).

The concise set of rules admits efficient performance on follow-
up tasks (such as error detection and incompleteness identification).
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Although existing rule mining techniques can be adapted to handle
variants of this problem (typically they are tailored to either detect
a specific type of error or perform completion), they tend to result
in a large number of redundant rules (§ 5.1.2) and require heuristics
to be adapted to tasks that they were not designed for. In the next
section, we formalize our problem definition further and propose
a principled, information-theoretic solution that naturally unifies
KG characterization.

3.2 Inductive Summarization: MDL Model

The inductive KG summarization problem (Problem 1) is closely re-
lated to the idea of compression in information theory—compression
finds patterns in data (what is normal), which in turn can reveal
outliers (what is strange or missing). In this work, we leverage MDL
(§ 3.1.6) for KG summarization—a formulation that we are the first
to use in the context of KG rule mining. Based on our preliminary
definitions above, Problem 1 can be restated more formally:

Problem 2 (Inductive KG Summarization with MDL). Given
a knowledge graph G, we seek to find the modelM∗ (i.e., set of rules)
that minimizes the description length of the graph,

M∗ = argmin
M∈M

L(G,M) = argmin
M∈M

{L(M) + L(G |M)}, (1)

where M is a set of rules (§ 3.1.3) describing what is normal in G,
L(M) is the number of bits to describe M , and L(G |M) is the number
of bits to describe parts of G that M fails to describe. Thus, expensive
parts of L(M) and L(G |M) reveal abnormal information in G (§ 4.3).

In § 3.2.1 we will define our model spaceM, how to describe a
KG with a model M ∈ M, and how to encode it in bits. Then, in
§ 3.2.2 we will describe the KG under the model, L(G |M), which we
refer to as the model’s error, since it encodes what is not captured
by M . All logarithms are base 2.

3.2.1 MDL ModelsM and Cost L(M). A model M ∈ M is a set
of rules, and each rule has a set of correct assertions (or guided
traversals of a graph G, § 3.1.5). The model thus describes G’s
semantics (labels) and connectivity (edges) through rule-guided
traversals over G . Each time a node is visited, some of its labels are
revealed by the structure of the rule. For instance, arriving at the
node Leo Tolstoy while traversing the subgraph in Fig. 2, reveals
(i) its Author label, since this is implied by the rule on the left, and
(ii) its link to where the traversal just came from (viz., War & Peace).

For our model, we consider a classic information theoretic

transmitter/receiver setting [43], where the goal is to transmit
(or describe) the graph to the receiver using as few bits as possible.
In other words, the sender must guide the receiver in how to fill in
an empty binary adjacency tensor A and binary label matrix L with
the 1s needed to describeG . Since MDL seeks to find the best model,
the costs that are constant across all models (e.g., the number of
nodes and edges) can be ignored during model selection. At a high
level, beyond this preliminary information, we need to transmit
the number of rules (upper bounded by the number of possible
candidate rules), followed by the rules in M and their assertions,
which we discuss in detail next

L(M) = log(2 ∗ |LV |2 ∗ |LE | + 1)︸                            ︷︷                            ︸
# rules

+
∑
д∈M

(
L(д)︸︷︷︸
rules

+ L(A(д))︸   ︷︷   ︸
assertions

)
(2)

Encoding the Rules. The rules serve as schematic instructions
on how to populate the adjacency tensor A and label matrix L
that describe G. Our rule definition states that a rule д = (Lд, χд)
consists of a set of root labels Lд (semantics) and recursive rule
definitions of the children (p, δ , д̂) ∈ χд (structure), so we need to
transmit both of them to the receiver. We encode them as

L(д) = L(Lд)︸︷︷︸
root labels

+LN(|χд | + 1)︸         ︷︷         ︸
# children

+
∑
д̂∈χд

(
− log

np

|E |︸  ︷︷  ︸
predicate

+ 1︸︷︷︸
dir

+ L(д̂)︸︷︷︸
child rule

)
, (3)

where np is the number of times predicate p occurs in G. We dis-
cuss each term in Eq. (3) next. We encode the root labels Lд by
transmitting their number (upper bounded by |LV |) and then the
actual labels via optimal prefix code [11], since they may not occur
with the same frequency:

L(Lд) = log |LV |︸    ︷︷    ︸
# labels

+
∑

ℓ∈Lд − log
nℓ

|V |︸                ︷︷                ︸
labels

, (4)

where nℓ is the number of times label ℓ ∈ LV occurs in G. Then,
for the children χд , we transmit their number (expected to be small)
using the optimal encoding of an unbounded natural number [40]
similarly to [3] and denoted LN; and per child we specify: (i) its
predicate p using an optimal prefix code as in Eq. (4), (ii) its direc-
tionality δ (i.e.,→ or←) without making an a priori assumption
about which is more likely, and (iii) its descendent rule д̂, by recur-
sively applying Eq. (3) until leaf rules (with 0 children) are reached.

We note that while some labels can be inferred from rules (e.g.,
the Author label of Leo Tolstoy), it is possible that all labels will not
be revealed by rules. Thus, we transmit the un-revealed labels as
negative error—i.e., information needed to make the transmission
lossless, but that is not modeled by M . We discuss this in § 3.2.2.

So far, in our running example, once the receiver has the infor-
mation that War & Peace is a book, it can apply the rule in Fig. 2.
It knows that War & Peace should have one or more Fictional

Families as characters, and one or more Authors who wrote it, but
it does not yet know which Fictional Families and Authors. This
information will be encoded next in the assertions.

Encoding the Rule Assertions. In Eq. (2), the last term encodes
the assertions, A(д), of each rule д. The receiver infers the starting
nodes of the traversals from д’s root (Eq. (3)) and the node labels
(encoded via other rules or L− in Eq. (10)). Thus, we transmit the
failed traversals (i.e., exceptions) and details needed to guide the
correct assertions:

L(A(д)) = L(A
(д)
ξ )︸   ︷︷   ︸

exceptions

+ L(A
(д)
c )︸   ︷︷   ︸

correct assertions

, (5)

The first term transmits which assertions are exceptions to a rule
(e.g. the book Syntactic Structures, which is non-fiction and hence
does not have any Fictional Family characters). We transmit the
number of exceptions, followed by their IDs (i.e., which assertions
they are), chosen from among the assertions:

L(A
(д)
ξ ) = log |A(д) |︸     ︷︷     ︸

# exceptions

+ log
(
|A(д) |

|A
(д)
ξ |

)
︸         ︷︷         ︸
exception ids

, (6)
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where log |A(д) | is an upper bound on the number of exceptions.
Intuitively, the bits needed to encode exceptions penalize overly

complex rules, which are unlikely to be accurate and generalizeable.
The remaining traversals are correct assertions, for which we

transmit details as we traverse each aд ∈ A
(д)
c . The encoding cost

for A(д)c is the sum of the cost of all these traversals:

L(A
(д)
c ) =

∑
aд ∈A

(д)
c

L(aд). (7)

Each traversal is encoded by recursively visiting neighbors accord-
ing to the recursive structure of д. Formally,

L(aд) =
∑
д̂∈χд

(
log |V|︸  ︷︷  ︸

# neighbors

+ log
(
|V| − 1

|A
(д̂)
c |

)
︸          ︷︷          ︸
neighbor ids

+
∑

aд̂ ∈A
(д̂)
c

L(aд̂)

︸           ︷︷           ︸
proceed recursively

)
, (8)

where, for each child of д, we first transmit the number of aд ’s
neighbors with the child’s labels (upper-bounded by the number
of nodes |V| in G), followed by the neighbors’ IDs (which are the
starting nodes of the child rule’s correct assertions, since the child
is itself a rule) using a binomial transmission scheme. Once the
neighbors have been revealed, the traversal proceeds recursively
to them. For example, the traversal in Fig. 2 begins at War & Peace

and the rule has two children (characters and authors). For each,
we transmit the number of nodes relevant (5 and 1 respectively),
followed by their IDs. The traversal then proceeds recursively to
each node just specified.

3.2.2 MDL Error L(G |M). In Eq. (1), along with sending the model
M , we also need to send anything not modeled, i.e., the model’s
negative error. This error consists of the cost of encoding (i) the node
labels that are not revealed by the rules and (ii) the unmodeled edges.
We denote the modeled labels and edges as LM andAM respectively,
which contain the subset of 1s in A and L that the receiver has been
able to fill in via the rules it received inM . We denote the unmodeled
labels and edges as the binary matrix L− = L−LM and binary tensor
A− = A−AM , and these are what we refer to as negative error. The
cost of the model’s error is thus

L(G |M) = L(L−) + L(A−). (9)

Specifically, the receiver can infer the number of missing node
labels (i.e., 1s in L−) given the total number of node labels and the
number not already explained by the model (§ 3.2.1). Thus, we send
only the position of the 1s in L−, encoding over a binomial (where
|.| denotes set cardinality and the number of 1s in a tensor/matrix):

L(L−) = log
(
|LV | · |V| − |LM |

|L− |

)
, (10)

We transmit missing edges L(A−) analogously

L(A−) = log
(
|V|2 · |LE | − |AM |

|A− |

)
. (11)

4 INDUCTIVE SUMMARIZATION: METHOD

In the previous section, we fully defined the encoding cost L(G,M)
of a knowledge graphG with a modelM of rules. Here we introduce
our method, KGist, which will leverage our KG encoding L(G,M)

to find a concise summaryM∗ of inductive rules, with which it will
characterize what is normal, what is strange, and what is missing
in the KG.

A necessary step to this end is to generate a set of candidate rules
C ⊇ M∗ fromwhichMDLwill construct the rules that can best com-
press G. However, even given that set, selecting the optimal model
M∗ ∈ M involves a combinatorial search space, since any subset of
C is a valid model, i.e., |M| = 2 |C | (where even |C| can be in the
millions for large KGs). This cannot be searched exhaustively, and
our MDL search space does not have easily exploitable structure,
such as the anti-monotonicity property of the support/confidence
framework. To find a tractable solution, we exploit the composi-
tionality of rules—starting with simple, atomic rules and building
from there. We give KGist’s pseudocode in Alg. 1, and describe it
by line next.

4.1 Generating and Ranking Candidate Rules

4.1.1 Candidate Generation (line 1). Webegin by generating atomic
candidate rules—those that assert exactly one thing (§ 3.1.4). The
number of possible atomic rules is exponential in the number of
node labels, but not all of them need to be generated: rules that
never apply in G do not explain any of the KG, and hence will
not be selected by MDL. Thus, we use the graph to guide can-
didate generation. For each edge in the graph, KGist generates
atomic rules that could explain it. For instance, the edge (War &

Peace, writtenBy, Leo Tolstoy) could be explained by rules such
as, “books are written by authors” and “authors write books.”
These have the forms д1 = ({Book}, {writtenBy,→, ({Author}, ∅)})
and д2 = ({Author}, {writtenBy,←, ({Book}, ∅)}), respectively. To
avoid candidate explosion from allowing rules to have any subset
of node labels, we only generate atomic rules with a single label
per node here, and account for more combinations of labels in the
next step.

4.1.2 Qualifying Candidate Rules with Labels (line 2). Adding more
labels to rules can help make them more accurate and more in-
ductive by limiting the number of places they apply (e.g., Fig. 3),
and subsequently their exceptions (which incur a cost in our MDL
model). To this end, given a rule д, KGist identifies the labels
shared by all the starting nodes of the correct assertions of the
rule: Φд =

⋂
aд ∈A

(д)
c

ϕ(saд ). If this set contains more labels than
the rule (i.e., Lд ⊂ Φд ), then it forms a new rule д′ with rootΦд .
If L(G,M0 ∪ {д′}) ≤ L(G,M0 ∪ {д}), where M0 is the empty model
without any rules, KGist replaces д with д′ in C. It carries this out
for all the rules in C. This can be viewed as qualifying д: it qualifies
the conditions under which д applies, to those that contain all the
labels rather than its original label alone.

4.1.3 Ranking Candidate Rules (line 3). Considering all possible
combinations of candidate rules P(C), and finding the optimal
model M∗ is not tractable. Moreover, an alternative greedy ap-
proach that constructs the model by selecting in each iteration the
rule д ∈ C that leads to the greatest reduction in the encoding
cost, would still be quadratic in |C| (which is in the order of many
millions for large-scale KGs). Instead, for scalability, given the set
of (potentially qualified) candidate rules C, we devise a ranking
that allows KGist to take a constant number of passes over the
candidate rules. Intuitively, our ranking considers the amount of
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Algorithm 1 KGist
Input: Knowledge graph G
Output: A model M , consisting of a set of rules

1: Read G and generate candidate rules C ▷ § 4.1.1
2: Qualify candidate rules with labels
3: Rank all rules д ∈ C first by ↓ ∆L(G |M0) then by ↓ |Ac (д) | and ↓

lexicographic Lд ▷ § 4.1.3, Eq. (12)
4: M ← ∅
5: while not converged do ▷ i.e., more rules can be added to M
6: for д ∈ C do

7: if L(G ,M ∪ {д }) < L(G ,M) then ▷ § 4.2.1
8: M ← M ∪ {д }
9: C ← C \ {д }
10: Optionally perform refinements Rm and Rn ▷ § 4.2.2

explanatory power that a rule has—i.e., how much reduction in
error it could lead to:

∆L(G |M0 ∪ {д}) = L(G |M0) − L(G |M0 ∪ {д}). (12)

KGist sorts the rules descending on this value, and breaks ties by
considering rules with more correct assertions first. If that fails, the
final tie-breaker is the lexicographic ordering of rules’ root labels.

4.2 Selecting and Refining Rules

4.2.1 Selecting Rules (lines 4-9). After ranking the candidate rules
C, KGist initializes M = ∅ and considers each д ∈ C in ranked
order for inclusion inM . For each rule д, it computes L(G,M ∪ {д}),
i.e., the MDL objective if д is added to the current model. If this
is less than the MDL cost L(G,M) without the rule (e.g., rule g
correctly explains new parts of G), then KGist adds д to M . If д
has a reverse version (e.g., “books are written by authors” and
“authors write books”), KGist considers both at once and picks the
one that gives a lower MDL cost. KGist runs a small number of
passes over C until no new rules are added. The resulting model M
approximates the true optimal modelM∗.

4.2.2 Refining Rules (line 10). The model at this point only con-
tains atomic rules. To better approximate M∗, we introduce two
refinements that compose rules via merging Rm and nesting Rn.

RefinementRmfor “rulemerging” composes rules that share
a root. It identifies all sets of rules, {дi , . . . ,дj } with matching roots
that correctly apply in the same cases, i.e., Lдi = · · · = Lдj and

{saдi : aдi ∈ A
(дi )
c } = · · · = {saдj : aдj ∈ A

(дj )
c }. It then merges

these into a single rule д′, consisting of the union of the children
χд i ∪ · · · ∪ χд j . For example, if all books that have authors (д1) also
have publishers (д2), then these would be merged into a single rule.
We refer to this variant as KGist+m.

Refinement Rn for “rule nesting” considers composing rules
where an inner node of one rule дin matches the root of another
rule дr t , possibly creating a more inductive rule. Rn begins by com-
puting, between each compatible дin and дr t , the Jaccard similarity
of the correct assertion starting points of the matching inner and
root nodes (i.e., it quantifies the ‘fit’ of the nodes). For instance,
if a rule asserts that “books have authors” (дin ), and another rule
asserts that “authors have a birthplace” (дr t ), then the Jaccard
similarity is computed over the set of book authors and the set

of authors with birthplaces. The refinement then considers nest-
ing the rules in descending order of Jaccard similarity, resulting
in rule дr t being subsumed into rule дin , which becomes its an-
cestor. If the composed rule дin ◦ дr t leads to lower encoding cost
than the individual rules (e.g., дin qualifies дr t as in Fig. 3), i.e.,
L(G, (M \ {дin,дr t })∪ {дin ◦дr t }) < L(G,M), then the composition
replaces дin and дr t . The Jaccard similarity between rules that were
compatible with дin or дr t is then recomputed with дin ◦ дr t , the
list of compatible rules is re-sorted by Jaccard similarity, and the
search continues until all pairs are considered with none being
composed (i.e., when no composition reduces the encoding cost).
This sorting is done over the set of selected rules M (§ 4.2.1), where
|M | << |C|, and since only few compositions occur (§ 5.1.1), this
repeated sorting is tractable. As nesting embeds дr t into дin , this re-
finement allows for arbitrarily expressive rules to form. We call our
method with both refinements (merging and nesting) KGist+n.

4.3 Deriving Anomaly Scores

We now discuss how to leverage a modelM (i.e., a summary of rules)
mined by KGist towards identifying what is strange or anomalous
in a KG, whether it be erroneous or missing—two key tasks in KG
research. Anomaly detection seeks to identify objects that differ
from the norm [1, 4]. In our case, the learned summary concisely
describes what is normal in a KG.

Intuitively, nodes that violate rules, and edges that are unex-
plained are likely to be anomalous. Next, we make this intuition
more principled by defining anomaly scores for entities (nodes) and
relationships (edges) in information theoretic terms.

4.3.1 Entity Anomalies. We define the anomaly score η of an entity
or node v as the number of bits needed to describe it as an exception
to the rules in the model:

η(v) =
∑

д∈r (v) :
v ∈A(д)ξ

1

|A
(д)
ξ |

log
(
|A(д) |

|A
(д)
ξ |

)
︸                   ︷︷                   ︸

bits to model v as an exception

, (13)

where r : V → P(M) maps each node to the rules that apply to
it. We distribute the cost of the exceptions equally over all |A(д)ξ |
violating nodes, following Eq. (6).

4.3.2 Relationship Anomalies. We also introduce an anomaly score
for a relationship or edge. Intuitively, edges that are not explained
by the model M are anomalous, and their anomaly score is defined
as the number of bits describing them as negative error. Since we
transmit all unmodeled edges in A− together (Eq. (11)), we make
this intuition more principled by distributing this transmission cost
evenly across all unmodeled edges in the anomaly score:

η(p)(s,p,o) =


1
|A− |

log
(
|V|2 ∗ |LE | − |AM |

|A− |

)
︸                                    ︷︷                                    ︸
bits spent transmitting edge as neg err

if A−s ,o,p = 1

0 otherwise
(14)

Under the reasonable assumption that our model effectively cap-
tures what is normal in the KG, it follows that edges unexplained
by the model are likely to be abnormal. Equation (14) captures this
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notion, but to prevent the unexplained edges from all receiving
equal scores, we add the anomaly score of the endpoints (Eq. (13)):

η(s,p,o) = η(s) + η(o) + η(p)(s,p,o). (15)

4.4 Complexity Analysis

Generating candidate rules involves iterating over each edge (and
its nodes’ labels) as it is encountered. The number of possible atomic
rules with a single label that could explain an edge (s,p,o) is 2· |ϕ(s)|·
|ϕ(o)|. Lettingϕmax denote the max number of labels over all nodes,
the overall complexity of candidate generation is O(|E | · ϕ2max ).
The number of candidate rules generated, |C|, is alsoO(|E | ·ϕ2max ).
Computing the error, L(G |M), is constant since it only involves
computing the log-binomials. The computation of L(M) depends on
the time of traversing and describing the correct assertions. Since
the traversals occur in a DFSmanner (in linear time) over a subgraph
enough smaller thanG to be ignored, L(M) takesO(|M |) time. Since
ranking only requires computing L(G |M), which is a small constant,
the cost comes only from sorting |C| items, which is O(|C| log |C|).
KGist takes a small number of passes over the candidate set (§ 4.2.1)
in O(|C|) time. So, the overall complexity is O(|C| + |C| log |C|),
which simplifies toO(|C| log |C|), orO(|E | · ϕ2max log(|E | · ϕ2max )).
We omit the complexity of the refinements for brevity.

5 EVALUATION

Our experiments seek to answer the following questions:
Q1. Does KGist characterize what is normal? How well can

KGist compress, in an interpretable way, a variety of KGs?
Q2. Does KGist identify what is strange? Can it identify and

characterize multiple types of errors?
Q3. Does KGist identify what is missing?
Q4. Is KGist scalable?

Data. Table 2 gives descriptive statistics for our data: NELL [9]
or “Never-Ending Language Learning” continually learns facts via
crawling the web. Our version contains 1,115 iterations, each intro-
ducing new facts for which the confidence has grown sufficiently
large. DBpedia [5] is extracted from Wikipedia data, heavily us-
ing the structure of infoboxes. The extracted content is aligned
with the DBpedia ontology via crowd-sourcing [35]. Yago [46], like
DBpedia, is built largely from Wikipedia. Yago contains 3 orders of
magnitude more node labels than the other two graphs (Tab. 2).

5.1 [Q1] What is normal in a KG?

In this section, we demonstrate how KGist characterizes what is
normal in a KG by achieving (1) high compression, (2) concise, and
(3) interpretable summaries with intuitive rules.

5.1.1 KG Compressibility. Although compression is not our goal,
it is our means to evaluate the quality of the discovered rules. Ef-
fective compression means that the discovered rules describe the
KG accurately and concisely.

Table 2: Description of KG datasets: number of nodes, edges, node

labels, relations, and average / median labels per node, resp.

|V | |E | |LV | |LE | avg ϕ(v) med ϕ(v)

NELL 46,682 231,634 266 821 1.53 1
DBpedia 976,404 2,862,489 239 504 2.72 3
Yago 6,349,336 12,027,848 629,681 33 3.81 3

Setup. We run KGist on all three KGs since each has different
properties (Tab. 2).M0 denotes an empty model with no rules, corre-
sponding to transmitting the graph entirely as error, i.e., L(G,M0) =
L(G |M0). We compare compression over this model.

Baselines.We compare to: (i) Freqwhich, instead of using MDL to
select rules from C, selects the top-k rules that correctly apply the
most often, where we set k to be the number selected by the best
compressed version of KGist. (ii) Coverage is directly analogous
to Freq, replacing the metric of frequency with the number of edges
explained by the rule. Both select rules independently, without
regard for whether rules explain the same edges. (iii) AMIE+ [17]
finds Horn rules, which cannot be encoded with our model, so we
do not report compression results, but only the number of rules
it finds. While other KG compression techniques exist (§ 2.2), we
are seeking to find inductive rules that are useful for refinement,
whereas generic graph compression methods compress the graph,
but never generate rules, and are hence not comparable.

Metrics. For each dataset, the first row reports the percentage of
bits needed for L(G,M) relative to the empty model. That is, it
reports L(G,M)/L(G,M0). Small values occur when M compresses
G well, and hence smaller values are better. The second row reports
the percentage of edges explained: |AM |/|A|. Lastly, we report how
many rules were selected to achieve the results.

Results. We record KG compression in bits in Table 3. In all cases,
KGist is significantly more effective than the Freq and Coverage
baselines, which ignore MDL. Indeed, Freq and Coverage result in
values greater than 100% in the first row, meaning they lead to an
increase in encoding cost over M0, due in part to selecting rules
independently from each other, and hence potentially explaining
the same parts of the graph with multiple rules. KGist is very
effective at explaining the graph, leaving only a small percentage of
the edges unexplained. It also explains more edges than Coverage
due to rule overlap again. The two refinements, Rm and Rn, are
also effective at refining model M to more concisely describe G.
Rn, which allows arbitrarily expressive rules, refines M to contain
fewer and better compressing rules.KGist+n explains slightly fewer
edges than KGist+m because nested rules apply only when their
root does (e.g., Fig 3).

5.1.2 Rule Conciseness & Interpretability. We compare the number
of rules mined by KGist to that of AMIE+ [17]. For AMIE+, we set
min-support to 100 and min PCA confidence to 0.1, as suggested
by the authors [17]. When running AMIE+ on graphs larger than
NELL, we experienced intolerable runtimes (inconsistent with those
in [17]). For Yago we were unable to get results, while for DBpedia
we report numbers from [18] on an older, but similarly sized version
of DBpedia. In Tab. 3 we see that KGistmines orders of magnitude
fewer rules than AMIE+, showing that it is more computationally
tractable to apply our concise summary of rules to refinement tasks
than the sheer number of rules obtained by other rule-mining meth-
ods that operate in a support/confidence framework. This is because
redundant rules cost additional bits to describe, so MDL encourages
conciseness. While these other methods could use the min-support
parameter to reduce the number of rules, it is not clear how to
set this parameter a priori. Using MDL, we can approximate the
optimal number of rules in a parameter-free, information-theoretic
way, leading to fewer but descriptive rules.
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Table 3: Compression: The small % bits needed (relative to an empty model) and num-

ber of rules found by various models demonstrate the effectiveness of KGist variants at

finding a concise set of rules inG . AMIE+ [17] findsHorn rules, which cannot be encoded

with our model, so we only report the number of rules it finds. Freq and Coverage are

baseline models that we introduce by greedily selecting from our candidate set C (with-
out MDL) the top-k rules that (1) correctly apply the most often and (2) cover the most

edges, resp. For these, we preset k to the number of rules found by the best-compressed

version of our method and report it as top-k to distinguish from the non-preset values.

Horn rules Rules of the form д = (Lд , χд )

Dataset Metric AMIE+ Freq Coverage KGist KGist+m KGist+n
NELL
(6,268,200
bits)

% Bits needed N/A 191.46% 192.72% 73.88% 73.00% 63.57%
Edges Explained N/A 57.33% 50.12% 78.52% 78.52% 74.67%
# Rules 32,676 top-k top-k 1,115 647 573

DBpedia
(119,117,468
bits)

% Bits needed N/A 674.51% 718.22% 69.88% 69.84% 69.77%
Edges Explained N/A 80.64% 71.70% 89.17% 89.17% 88.51%
# Rules ∼6,963 [17] top-k top-k 516 505 498

Yago
(793,027,801
bits)

% Bits needed N/A 896.33% 947.64% 76.13% 75.98% 75.04%
Edges Explained N/A 86.54% 83.44% 88.40% 88.40% 85.20%
# Rules failed top-k top-k 60,298 34,331 32,670

Figure 3: Rules mined from NELL (left two) and

DBpedia (right). While the bottom atomic rule in

Rule 3 does not hold in general (not all places

are the river mouth of bodies of water), qualify-

ing (§ 4.1.2) & Rn (§ 4.2.2) improve its inductive-

ness: since rules apply to the root (blacknode), the

bottom rule is “qualified” to only apply to those

places that are tributaries of Places, Streams, &

Bodies of Water.

Furthermore, we present and discuss in Fig. 3 example rules
mined with KGist. These show that our rules are interpretable
and intuitively inductive, and that Rn is a useful refinement for
improving the inductiveness of rules.

5.2 [Q2] What is strange in a KG?

Here we quantitatively analyze the effectiveness of KGist at identi-
fying a diverse set of anomalies, and demonstrate the interpretabil-
ity of what it finds. Whereas most approaches focus on exceptional
facts [51], erroneous links, erroneous node type information [35],
or identification of incomplete information (e.g., link prediction)
[17], KGist rules can be used to address multiple of these at once.
To evaluate this, we inject anomalies of multiple types into a KG,
and see how well KGist identifies them.

Setup. We inject four types of anomalies. For each, we select q
percent of G’s nodes uniformly at random to perturb. We sample
nodes independently for each type, so it is possible that occasionally
a node is chosen multiple times. This is realistic, since there are
multiple types of errors in KGs at once [35]. Although we target
nodes, our perturbations also affect their incident edges. Thus,
we formulate the anomaly detection problem as identifying the
perturbed edges. Specifically, we introduce the following anomalies:

• A1 Missing labels: We remove one label from each node.
Unlike the A2-A4, we only sample nodes with more than
one label. E.g., we may remove the entrepreneur label from
Bill Gates, leaving the labels billionaire, etc. We consider
all the in/out edges of the altered nodes as perturbed.
• A2 Superfluous labels: We add to each node a randomly se-
lected label that it does not currently have. E.g., we may add
the label Fruit to Taj Mahal.
• A3 Erroneous links: We inject 1 or 2 edges incident to each
node, choosing the edge’s predicate and destination ran-
domly. E.g., we may inject random edges like (Des Moines,

owner, Coca-Cola). We mark injected edges as anomalous.
• A4 Swapped labels: For each node, we replace a label with a
new random one that it does not yet have.

For this experiment we show results on NELL, since it has confidence
values for each of its edges, which we can use to sample negative
examples. The perturbed edges are ground truth errors (positive
examples), and we randomly sample from NELL an equal number
of ground truth correct edges with a confidence value of 1.0 (after
filtering out edges that our injected anomalies perturbed). We use
a 20/80 validation/test split, and the perturbed graph for training.

Baselines. We compare to (i) ComplEx, an embedding method
that we tune as in [48] (ranking edges based on its scoring function),
(ii) TransE, an embedding method that we tune as in [8] (ranking
edges based on their energy scores), (iii) SDValidate [36], an error
detection method deployed in DBpedia (it outputs an edge ranking),
and (iv) AMIE+, designed for link prediction, but which we adapt
for error detection by ranking based on the sum of the confidences
of the rules that predict each test edge (i.e., edges that are predicted
bymany, high-confidence rules will be low in the ranking, and edges
that are not predicted by any rules will be high in the ranking). We
also tried PaTyBRED [29], but it had prohibitive runtime.

KGist variants. To define edge anomalies for our variants, we use
the edge-based anomaly score η in Eq. (15). KGist_Freq is the Freq
method described in § 5.1.1, but uses KGist’s anomaly scores. While
KGist+n learns compositional rules that help with compression,
we found that the simpler rules of KGist+m performed better in
this task, so we report only its results for brevity. The unsuper-
vised methods do not have hyper-parameters, but are tested on the
same test set as ComplEx/TransE, so the validation set errors are
additional noise they must overcome.

Metrics. Each ranking includes only the test set edges, and we
compute the AUC for each ranking, using reciprocal rank as the
predicted score for each edge—edges higher in the ranking being
closer to 1 (i.e., more anomalous). We also compute Precision@100,
Recall@100, and F1@100 for (i) the entire test set of edges; (ii) each
type of perturbed edges from the different anomaly types. For ties
in the ranking, we extend the list beyond 100 until the tie is broken
(e.g., if the 100th and 101st edge have the same score, then we
compute over 101 edges). Ties did not often extend much beyond
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Table 4: Anomaly detection results on NELL. We mark the best performing method with a gray background and the best unsupervised method

with bold text. Wemark statistical significance at a 0.05 p-value (paired t-test) with an “*” forKGist_Freq/KGist+m vs. unsupervisedmethods.

The final row shows the average rank of each method. KGist+m performs the most consistently well.

Supervised Unsupervised
Task Metric ComplEx TransE SDValidate AMIE+ KGist_Freq KGist+m

All
anomalies

AUC 0.5508 ± 0.02 0.5779 ± 0.04 0.4996 ± 0.00 0.4871 ± 0.04 0.5739 ± 0.01 0.6052 ± 0.03*
P@100 0.4820 ± 0.05 0.7040 ± 0.06 0.5100 ± 0.04 0.3980 ± 0.07 0.6816 ± 0.10 0.7419 ± 0.07*
R@100 0.0087 ± 0.00 0.0126 ± 0.00 0.0092 ± 0.00 0.0072 ± 0.00 0.0126 ± 0.00 0.0139 ± 0.00*
F1@100 0.0172 ± 0.00 0.0247 ± 0.00 0.0181 ± 0.00 0.0141 ± 0.00 0.0247 ± 0.01 0.0273 ± 0.01*

A1 missing
labels

AUC 0.5842 ± 0.04 0.6021 ± 0.06 0.4997 ± 0.00 0.4409 ± 0.06 0.5149 ± 0.02 0.6076 ± 0.03*
P@100 0.2640 ± 0.05 0.4280 ± 0.15 0.3040 ± 0.06 0.1200 ± 0.05 0.4067 ± 0.11 0.4759 ± 0.05*
R@100 0.0119 ± 0.00 0.0181 ± 0.01 0.0134 ± 0.00 0.0057 ± 0.00 0.0199 ± 0.01 0.0244 ± 0.01*
F1@100 0.0227 ± 0.01 0.0346 ± 0.01 0.0257 ± 0.01 0.0109 ± 0.01 0.0377 ± 0.01 0.0463 ± 0.02*

A2
superfluous

labels

AUC 0.5502 ± 0.02 0.5659 ± 0.03 0.4989 ± 0.01 0.4946 ± 0.03 0.4997 ± 0.04 0.5115 ± 0.03

P@100 0.1780 ± 0.05 0.3160 ± 0.16 0.2160 ± 0.07 0.1040 ± 0.09 0.2081 ± 0.06 0.2485 ± 0.09

R@100 0.0122 ± 0.00 0.0219 ± 0.01 0.0152 ± 0.00 0.0070 ± 0.01 0.0169 ± 0.01 0.0175 ± 0.01

F1@100 0.0229 ± 0.00 0.0408 ± 0.02 0.0283 ± 0.01 0.0131 ± 0.01 0.0311 ± 0.01 0.0326 ± 0.01

A3
erroneous
links

AUC 0.2495 ± 0.03 0.4126 ± 0.08 0.4966 ± 0.01 0.8902 ± 0.08 0.7383 ± 0.00 0.8423 ± 0.00
P@100 0.1020 ± 0.04 0.0020 ± 0.00 0.0480 ± 0.02 0.1860 ± 0.08* 0.0131 ± 0.01 0.0137 ± 0.01
R@100 0.0374 ± 0.02 0.0007 ± 0.00 0.0176 ± 0.01 0.0679 ± 0.03* 0.0051 ± 0.01 0.0052 ± 0.01
F1@100 0.0548 ± 0.02 0.0011 ± 0.00 0.0257 ± 0.01 0.0995 ± 0.05* 0.0074 ± 0.01 0.0075 ± 0.01

A4
swapped
labels

AUC 0.5369 ± 0.03 0.5527 ± 0.02 0.4991 ± 0.00 0.4891 ± 0.03 0.6904 ± 0.01* 0.6633 ± 0.07
P@100 0.2160 ± 0.08 0.4200 ± 0.09 0.2080 ± 0.08 0.1240 ± 0.06 0.5360 ± 0.15* 0.4768 ± 0.10
R@100 0.0136 ± 0.00 0.0269 ± 0.01 0.0128 ± 0.00 0.0079 ± 0.00 0.0379 ± 0.01* 0.0320 ± 0.01
F1@100 0.0256 ± 0.01 0.0505 ± 0.01 0.0241 ± 0.01 0.0148 ± 0.01 0.0705 ± 0.01* 0.0599 ± 0.01

Avg rank 4.10 2.90 4.15 5.00 2.90 1.95

Figure 4: Example anomalies in NELL (left two) and DBpedia (right)

that violate many rules. The 1st and 3rd are missing information.

While most states are the headquarters of sports teams, Pennsylva-

nia does not have any teams listed. However, the Steelers, Eagles,

etc. are all teams located in PA. Also, unlike most music genres, 4-

beat has no persons listed who play it. The 2nd exception may not

capture missing information, since hippopotamuses were, until re-

cently, considered herbivores; this node is anomalous as it differs

from many carnivorous and omnivorous mammals.

100, but for KGist_Freq they tended to extend farthest. Positives
are considered perturbed edges and negatives un-perturbed edges.
When computing scores for a particular anomaly type, we first filter
the ranking to only contain the edges perturbed by that anomaly
type and the un-perturbed edges to ensure that edges perturbed by
other anomaly types are not considered false negatives.

Results. In Table 4 we report results identifying anomalies gen-
erated with sampling probability q = 0.5% and 5 random seeds.
We report avg and stdev over the 5 perturbed graphs. Across all
anomaly types, KGist+m is most effective at identifying anomalous
edges, demonstrating its generality. This is further evidenced by its
top average ranking: it ranks 1.95 on average across all anomaly
types and metrics. Furthermore, as discussed in Fig. 4, not only can

it identify anomalies, but its interpretable rules allow us to reason
about why something is anomalous.

Inmost cases,KGist+m even outperformedComplEx and TransE,
supervised methods requiring validation data for hyper-parameter
tuning. A2 is the only anomaly type where supervised methods
outperform unsupervised methods, but the difference is not statis-
tically significant. KGist_Freq performs better than most other
baselines, demonstrating that our formulation of anomaly scores
and rules are effective at finding anomalies. However, as KGist+m
usually outperforms KGist_Freq, we conclude that MDL leads to
improvement over simpler rule selection approaches. AMIE+ only
performed well onA3. We conjecture that this is because randomly
injected edges are likely to be left un-predicted by all of AMIE+’s
rules. On the other hand, edges with perturbed endpoints may be
left un-predicted by some rules, but, out of the large number of rules
that AMIE+ mines (§ 5.1.2), some rule is likely to still predict it. The
results for q = 1.0% were overall consistent, with a few fluctuations
between KGist+m and KGist_Freq. We omit the results for brevity.

5.3 [Q3] What is missing in a KG?

In this section, we evaluate KGist’s ability to find missing informa-
tion. Most KG completion methods target link prediction, which
seeks to find missing links between pairs of nodes that are present in
a KG. If either node is missing, then link prediction cannot provide
any information. We focus on this task: revealing where entities are
missing. Since KGist’s rules apply to nodes, rather than edges, the
rule exceptions can reveal where links to seen or unseen entities are
missing (but cannot predict which specific entity the link should
be to). Thus, our task and link prediction are complementary.

Setup. We assume the commonly used partial completeness as-
sumption (PCA) [16, 18, 35], according to which, if an entity has
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one relation of a particular type, then it has all relations of that type
in the KG (e.g., a movie with at least one actor listed in the KG has
all its actors listed). We generate a perturbed KG with ground-truth
incomplete information via the following steps: (1) we randomly
remove q% of nodes (and their adjacent edges) from G, and (2) we
enforce the PCA (e.g., if we removed one actor from a movie, then
we remove all the movie’s actor edges). Our goal is to identify that
the neighbors of the removed nodes are missing information, and
what that information is. We run KGist on the perturbed KG, and
identify the exceptions, A(д)ξ , of each rule д ∈ M . If a rule asserts
the removed information, then this is a true positive. For example,
if we removed Frankenstein’s author and KGistmines the rule that
books are written by authors, then that rule asserts the removed
information. We use NELL and DBpedia for this experiment as their
sizes permit several runs over different perturbed KG variants.

Baselines. Link prediction methods are typically used for KG com-
pletion, but they do not apply to our setting: they require that
both endpoints of an edge be in G to predict the edge, while our
setup assumes that one endpoint is missing from G. Thus, we com-
pare KGist to Freq and AMIE+C. Freq, as before (§ 5.1.1), selects
the top-k rules with the most correct assertions, where k is set to
the number of rules KGist mines. AMIE+C is what we name the
method from [16]. AMIE+C requires training data comprised of
examples of (u, incomplete, p) triples where u ∈ V is an entity,
p ∈ LE is a predicate, and the triple specifies that node u is missing
its links of type p (e.g., a movie is missing actors). We use 80% of
the removed data as training data for AMIE+C and test all methods
on the remaining 20%. We tune AMIE+C’s parameters as in [16].

Metrics.We report only recall, R, since information that we did not
remove but was reported missing could be either a false positive, or
real missing information that we did not create [35]. We compute
recall as the number of nodes identified as missing, divided by the
total number of nodes removed. In addition, we compute a more
strict recall variant, RL, which requires that the missing node’s label
also be correctly identified (e.g., not only do we need to predict
the absence of a missing writtenBy edge, but also that the edge
should be connected to an author node). KGist can return this label
information, but AMIE+C only predicts the missing link, not the
label. Thus, we omit RL for AMIE+C.

Results.We report results in Table 5 with q = 5% (the results are
consistent with other q values). KGist outperforms all baselines by
a statistically significant amount (10-11% on R, 13-27% on RL, and
paired t-test p-values << 0.01), which demonstrates its effective-
ness in finding information missing from a KG. We conjecture that
KGist outperforms AMIE+C because AMIE+C requires all training
data be focused around a small number of predicates (e.g., 10-11 in
[16]) in order to learn effective rules, while MDL encourages KGist
to explain as much of the KG as possible, allowing it to find missing
information over more diverse regions of the KG. This is further
evidenced by the fact that KGist outperforms Freq, which only
applies to frequent regions of the KG. Not only does KGist effec-
tively reveal where the missing nodes are, it also usually correctly
identifies their labels (small drop in RL compared to R). AMIE+C is
not able to do this, and Freq can only report the label sometimes,
by taking advantage of the rules we formulated in this work.

Table 5: KG completion results on NELL and DBpedia (averages and

stdevs of 10 runs). We report Recall (R) and Recall + Label (RL), a
stronger version of R that requires both the location of the missing

node and its label be identified.We list link prediction (LP)methods

to emphasize that our task and LP are complimentary. Results are

statistically significant (paired t-test) with p-values << 0.01.

Supervised Unsupervised

Dataset Metric LP AMIE+C [16] Freq KGist

NELL
R N/A 0.6587 ± 0.03 0.4589 ± 0.02 0.7598 ± 0.02
RL N/A N/A 0.3924 ± 0.02 0.6636 ± 0.01

DBpedia
R N/A 0.8187 ± 0.01 0.8049 ± 0.01 0.9288 ± 0.00
RL N/A N/A 0.7839 ± 0.01 0.9179 ± 0.00

5.4 Scalability

Figure 5: KGist is near-linear in

the number of edges.

In this section, we evaluate
KGist’s performance as the
number of edges in the KG
grows. We perform this evalua-
tion on an Intel(R) Xeon(R) CPU
E5-2697 v3 @ 2.60GHz with 1TB
RAM, using a Python implemen-
tation. NELL, DBpedia, and Yago
have from 231,634 to 12,027,848
edges.We runKGist on each KG
three times. Since we aim to analyze the runtime with respect to
the number of edges, but Yago has three orders of magnitude more
labels, we run KGist with an optimization that only generates can-
didate rules with the 300 most frequent labels (approximately equal
to NELL and DBpedia), allowing us to fairly investigate the effect
of the number of edges. Figure 5 shows the number of edges vs.
runtime in seconds. In practice, KGist is near-linear in the number
of edges. Even on Yago, it mines summaries in only a few minutes,
and on NELL in seconds.

6 CONCLUSION

This paper proposes a unified, information theoretic approach to
KG characterization, KGist, which solves our proposed problem
of inductive summarization with MDL. KGist describes what is
normal in a KG with a set of interpretable, inductive rules, which
we define in a new, graph-theoretic way. The rule exceptions, and
the parts of the KG that the summary fails to describe reveal what
is strange and missing in the KG. KGist detects various anomaly
types and incomplete information in a principled, unified manner,
while scaling nearly linearly with the number of edges in a KG—this
property allows it to be applied to large, real-world KGs. Future
work could explore using KGist’s rules to guide KG construction.
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