
Analyzing Data-Centric Properties for Graph
Contrastive Learning

Puja Trivedi
University of Michigan
pujat@umich.edu

Ekdeep Singh Lubana
University of Michigan

CBS, Harvard University
eslubana@umich.edu

Mark Heimann
Lawrence Livermore National Labs

heimann2@llnl.gov

Danai Koutra
Unversity of Michigan
dkoutra@umich.edu

Jayaraman J. Thiagarajan
Lawrence Livermore National Labs

jjayaram@llnl.gov

Abstract

Recent analyses of self-supervised learning (SSL) find the following data-centric
properties to be critical for learning good representations: invariance to task-
irrelevant semantics, separability of classes in some latent space, and recoverability
of labels from augmented samples. However, given their discrete, non-Euclidean
nature, graph datasets and graph SSL methods are unlikely to satisfy these prop-
erties. This raises the question: how do graph SSL methods, such as contrastive
learning (CL), work well? To systematically probe this question, we perform a
generalization analysis for CL when using generic graph augmentations (GGAs),
with a focus on data-centric properties. Our analysis yields formal insights into
the limitations of GGAs and the necessity of task-relevant augmentations. As
we empirically show, GGAs do not induce task-relevant invariances on common
benchmark datasets, leading to only marginal gains over naive, untrained baselines.
Our theory motivates a synthetic data generation process that enables control over
task-relevant information and boasts pre-defined optimal augmentations. This
flexible benchmark helps us identify yet unrecognized limitations in advanced
augmentation techniques (e.g., automated methods). Overall, our work rigor-
ously contextualizes, both empirically and theoretically, the effects of data-centric
properties on augmentation strategies and learning paradigms for graph SSL.

1 Introduction

Self-supervised learning (SSL) [1–9] has revolutionized visual representation learning by producing
representations that are more robust [10, 11], transferable [12, 13], and semantically consistent [6]
than their supervised counterparts. This impressive empirical success has motivated a surge of efforts
that seek to gain insights into SSL’s behavior [14–21] or adapt successful frameworks to different
modalities, including graph data [22–26]. Notably, many analyses of SSL have converged upon the
following data-centric properties as critical to its success: (i) augmentations should induce invariance
to task-irrelevant attributes, as to better reflect the underlying data generation process and improve
generalizability; (ii) samples (and corresponding augmentations) from different underlying classes
should be separable in some latent space, as to ensure a high-performing classifier is realizable; and
(iii) labels of augmented samples should be recoverable from the natural sample using which they
were generated [16, 20, 27] so that representations are semantically consistent for downstream tasks.

Correspondence to pujat@umich.edu.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

ar
X

iv
:2

20
8.

02
81

0v
3

 [
cs

.L
G

]
 2

3
Ja

n
20

23

Due to the continuous representation of natural images and well-designed augmentation strategies,
these properties are indeed aligned with standard visual SSL practices [28].

However, despite the growing popularity of SSL for graph representation learning, it appears unlikely
that the above properties are supported for non-Euclidean, discrete data. Indeed, the design of
recoverable graph data augmentation [29–31] remains an open research area because is it difficult to
determine prima facie what changes to a graph’s topology or node features will preserve semantics.
Moreover, as graphs are often abstract representations of structured data, it is also unclear what
invariances are relevant to the downstream task. The assumption of a separable latent space may also
be violated as intermediate points in this latent space may be meaningless in the discrete, structured
input space. In contrast to natural image data, the systematic evaluation of these properties for graph
SSL is difficult as it must accommodate both discrete and structured data.

Our Work. Better understanding the relationship between graph SSL practices and the aforementioned
properties can help explain the behavior of existing frameworks and inform the design of new
ones. Therefore, in this work, we take the first step by analyzing commonly used generic graph
augmentations (GGAs) and designing useful tools that enable probing of these properties, including a
theoretical framework and a synthetic data generation process that helps disentangle the effects of
unrecoverable augmentations from performance. Our contributions can be summarized as follows:

Sec. 3: Analysis of Generalization and Separability. We provide the first generalization error
bound for graph CL when using GGAs, demonstrating that GGAs can induce a performance-
separability trade-off that is determined by underlying dataset properties (see Figure 1).

Sec. 4.1: Missing Invariance on Benchmark Datasets. On standard benchmarks, we show that
models trained with GGAs have marginal improvements in accuracy and induce limited task-relevant
invariance, at best, when compared to untrained encoders. We thus reveal a fundamental misalignment
between the objectives and practical behavior of graph CL (see Figure 2).

Sec. 4.2: Synthetic Data Generation Process. We propose a synthetic data generation process that
allows for control over augmentation recoverability and dataset separability (see Figure 3). Using this
process, we validate our theoretical observations and demonstrate that recently proposed automated
and implicit augmentation methods struggle to induce task-relevant invariances (see Figure 4).

2 Background

In this section, we briefly discuss existing graph SSL paradigms. (Please see App. G for additional
discussion.) We then discuss the motivation behind data-centric properties (task-relevant invariance,
separability and recoverabilty) central to this work.

Self-Supervised Graph Representation Learning. Recent advancements in representation learning
have been driven by the SSL paradigm, where the goal is to ensure representations have high
similarity between positive views of a sample and high dissimilarity between negative views. Existing
SSL frameworks can be broadly categorized based on the mechanism adopted for enforcing this
consistency: contrastive learning (CL) frameworks [1, 8, 7, 22, 29, 31, 32], such as GraphCL[22], use
the InfoNCE loss; approaches that rely only on positive pairs, such as SimSiam [2] and BGRL [24]
use Siamese architectures with stop gradient [2] and asymmetric branches [21] respectively; SpecCL
[15] uses a spectral clustering loss (SpecLoss) to enforce consistency; others attempt to directly
reduce redundancy between views [3, 33]. Despite these differences, all methods rely upon data
augmentation to generate positive views, which are assumed to share semantics. Generic graph
augmentations (GGAs) [22] are a popular strategy and assume limited changes to a graph’s node
features or topology are unlikely to alter its label. GGAs include random node dropping, edge
perturbation, masking node attributes and sampling subgraphs. Other strategies include using
diffusion matrices [23], GGAs with a non-uniform prior, automated methods which rely upon bi-level
optimization [29] or adversarial optimization [31], and implicit methods, such as SimGRACE [32],
which use weight-space perturbations as augmentations. Here, we primarily focus on GGAs due
to their popularity, simplicity and effectiveness. Please see App. G for additional discussion about
augmentation paradigms.

Theoretical Analsyis of SSL. Several different perspectives have recently been used to successfully
analyze SSL’s behavior, including learning theory [15, 14, 34], causality [18, 17], information
theory [27], and loss landscapes [35–38]. Many of these analyses assume, either implicitly [18, 34] or

2

explicitly [15, 28, 39, 40], the existence of a latent space that is invariant to augmentation functions
and supports the properties of recoverability and separability (also see Figure 1).

Invariance to Augmentations: Producing similar representations for positive views, i.e., augmenta-
tions, induces invariance to the corresponding transformation function. Indeed, if augmentations
are related by properties that are not relevant to the downstream task, representations will become
invariant to this relationship over the course of SSL training and generalization will improve [41, 16].
Conversely, however, if augmentations induce invariance to relevant properties, then representations
will fail to represent this information and are likely to lose task performance (e.g, color invariance
is harmful when classifying different Labradors) [20, 42]. This latter point is often ignored by the
theoretical analyses mentioned above. We note Tian et al.’s information theoretic framework [16] is a
notable exception to this critique; we discuss the limitations of their results in App. C.3.

Recoverability and Separability: These properties state that in the latent space which instantiates
the data generation process, two augmentations of a sample are close to each other (e.g., a clear and
blurry dog) and unrelated points (e.g., dogs and cats) are sufficiently separated from each other. It is
often implicitly assumed that only task-relevant augmentations are allowed [15, 28]. While originally
proposed for manifolds [39], both recoverability and separability have been recently converted to
graph connectivity properties [15] and verified empirically on modern deep learning methods [28].
Specifically, recoverability and separability can be used to bound generalization error on unseen data
and we demonstrate how this can be done for graph CL in Sec. 3.

Notations. Let X be a natural dataset with r different classes. Our use of word natural implies
the samples in this dataset were collected via a natural sensing process (e.g., molecules from
wet-lab experiments or scene graphs from images). We use A(.|g) to denote the distribution of
augmentations for the sample g ∈ X . Here, A(g|g) represents the probability of generating a
particular augmentation g, and X := ∪x∈PXA(·|g) is the set of all samples transformed via our
set of augmentation functions. Let f : X → Rd be a feature extractor, where f(x) can be used
for downstream tasks. Unless otherwise noted, let g be a natural (graph) sample from X , A(·|·)
be some GGA, and g ∼ A(·|g) be an augmented graph generated using a given GGA. Vg and Eg
correspond, respectively, to the node and edge sets of g. We note our generalization analysis will
specifically focus on the recently proposed contrastive loss by HaoChen et al. [15], called SpecLoss
(L(f)), which we define as follows: let g ∼ A(·|g), g+ ∼ A(·|g), given g ∈ X , and g− ∼ A(·|g′),
given g′ ∼ PX ∧ g′ 6= g. Then, for the positive/negative pairs (g, g+)/(g, g−), SpecLoss is:

L(f) = −2 · Eg,g+

[
f(g)>f(g+)

]
+ Eg,g−

[(
f(g)>f(g−)

)2]
. In a contemporary work, Saunshi et

al. [14, 41] developed a generalization analysis for general contrastive loss functionals, including
SpecLoss. Our analysis has a similar algorithmic flow as Saunshi et al.’s and hence the takeaways
from our work can be easily extended for other contrastive methods as well. We provide additional
discussion of this extension in App. C.1.

3 Generalization Bounds for CL with GGA

As discussed above, recent analyses have found that SSL generalization error can be bounded under
the assumptions of invariance to relevant augmentations, recoverability, and separability. In this
section, we demonstrate how GGAs influence these properties by deriving a generalization bound
tailored for graph data. Notably, this bound allows us to demonstrate conditions where using GGAs
results in low separability and recoverability, motivating the need for augmentations that induce
task-relevant invariances that go beyond generic perturbative graph transformations.

Key Insight: Our main idea for the following analysis is that GGAs can be instantiated in a general
manner as a composition of graph edit operations. This allows us to derive a unifying assumption
related to recoverability and separability in terms of the graph edit distance (GED) between samples.
Moreover, because GED amongst samples is a property intrinsic to the dataset, we can now discuss
how the tightness of a SSL generalization error bound (SpecLoss’s, specifically) will change as a
function of GED between samples of underlying classes and augmentation strength.

We begin by defining GED and explaining how GGAs can be represented using graph edit operators.

Definition 3.1 (Graph Edit Distance). Let the elementary graph operators comprise the set of graph
edits: these include node insertion, node deletion, edge deletion, edge addition, and an additional

3

Figure 1: Illustrating data-centric properties forming the core of our assumptions. Our generalization
analysis (Sec. 3) relies upon several data-centric properties, namely recoverability, separability, and frequency
of inconsistent samples. Here, we illustrate these properties via a figure. (i) Separability: Samples from
different classes should be separable, as illustrated by the existence of separate manifolds for different classes.
This property helps assume the existence of a classifier h that can classify natural samples with low error. (ii)
Recoverability: Labels of augmented samples should be recoverable from the original samples from which they
were generated. This entails that augmentations generated from the same original samples are expected to be
closer in latent space than two arbitrary samples, which will likely correspond to different classes. This property
helps assume a constraint on the classifier h that it must also classify the augmentations of a sample to the same
class as that of the sample. (iii) Inconsistent Samples: While the likelihood of generating augmentations that
alter class semantics is low for image data, this if often note the case in graphs, especially when using generic
graph augmentations. We refer to augmentations that can be generated from original samples belonging to
different classes as inconsistent, and demonstrate that graph edit distance can be used to identify such samples.
Overall, our theory shows inconsistent samples decrease separability and recoverability, harming generalization.
(Figure inspired from Chung et al. [43] and HaoChen et al. [15].)

categorical feature replacement operator. Then, GED (g1, g2) = min(e1,...,ek)∈P(g1,g2)
∑k
i=1 c (ei),

whereP (g1, g2) is the set of paths (series of edit operations) that transforms graph g1 to be isomorphic
to graph g2. Here, ei is i-th edit operation in the path, and c(ei) is the cost for performing the edit.

As shown in Table 1, frequently used GGA transforms can be easily decomposed using standard
graph edit operators described in Def. 3.1. For example, assuming each operator has a unit cost, the
edge perturbation augmentation can be seen as applying the minimum cost path consisting of edge
deletion and edge addition operations to obtain g from g. Further, augmentation strength and the set
of possible augmentations for a given natural sample can also be expressed in terms of GED:

Lemma 3.2. Allowable augmentations can be expressed using GED. Let γ represent augmentation
strength or the fraction of the graph that GGAs may modify. Then, δ ∈ {bγ|Vg|c, bγ|Eg|c} repre-
sents the number of discrete, allowable modifications for the specified GGA, so GED(g, g) ≤ δ.
Correspondingly, we have g ∈ A(g)⇔ GED(g, g) ≤ δ.

Table 1: Generic Graph Augmentations vs.
Graph Edit Operators. GGAs can be straight-
forwardly expressed using graph edit operators.
Please see Appendix D for a detailed discussion.

Augmentations Graph Edit Operators
Node Dropping Node Deletion
Edge Perturbation Edge Deletion, Edge Addition
Categorical Attribute Masking Feature Masking Operator
Sub-graph Sampling Node Deletions

For example, consider a graph g ∼ A(·|g), generated
via node dropping. Then, g contains 1− δ nodes and
the minimum cost path to transform g to g contains
only δ “node deletion” operations. Further, all augmen-
tations generated from g will have 1− δ nodes and thus
have GED(g, g) ≤ δ. In Appendix D, we prove the
above statement and demonstrate how to approximate
|A(g)| (e.g., the set of allowable augmentations for a
given natural sample) using a combinatorial, counting
procedure that is dependent on δ. Because GGAs are applied randomly, note that the probability of
a generating a particular augmentation is A(g|g) ≈ 1

|A(g)| . Given these definitions, we now derive
a unifying assumption in terms of GED between samples. We begin by formally introducing the
separability and recoverability assumptions, focusing on the recently proposed, unified version [15]:

Assumption 3.3 (Separability plus Recoverability Assumption, (Assm. 3.5 in [15])). Let g ∈ X and
y(g) be its label, and g ∼ A(·|g). Assume that there exists a classifier h, such that h(g) = y(g) with
probability at least 1− α. We refer to α as the error of h.

4

See Figure 1 a visualization explaining this assumption. Intuitively, Assm. 3.3 states that there must
exist a classifier h that is able to associate a sample’s label with its augmentations, hence enabling
recoverability, i.e., representations of augmentations are close to each other. Meanwhile, by ensuring
augmentations of samples from a class with label “A” are classified as “A” and from a class with label
“B” are classified as “B”, the assumption simultaneously enables separability, i.e., representations of
samples from different classes should be dissimilar. As we will see, the generalization bound will be
a function of α, the probability that a classifier satisfying Assm. 3.3 associates augmentations of a
class’s samples with another class. As α grows larger, the generalization error bound becomes less
tight. Therefore, it is important to understand how the choice of augmentation and augmentation
strength (γ) can influence the error of h. We show one can also understand α as a trade-off between
inter-class GED of samples and augmentation strength.

Intuitively, h will incur error on augmented samples that can be generated from a set of natural
samples that belong to different underlying classes, as it is unclear how these samples should be
embedded in a latent space. We now formally define such samples. First, using Lemma 3.2, we can
determine if two augmentations could have been generated from the same sample.

Corollary 3.4. (Co-occuring augmentations.) Let g ∈ X and g, g′ ∈ X . Then, g ∼ A(g) ∧ g′ ∼
A(g)⇔ GED(g, g′) ≤ 2δ, where δ = min{bγ|Vg|c, bγ|Eg|c bγ|Vg|c, bγ|Eg|c}.

Given the above result, we now define inconsistent samples as follows.

Definition 3.5 (Inconsistent Samples). Let g ∈ X , and y : X → r be a labeling function. Further,
let X in = {g|g ∈ X ∧GED(g, g) ≤ δ} be the set of natural samples that may have generated g
and Y ∗in = {y(g)|g ∈ X in} be the set of unique labels. If g is an inconsistent sample, |Y ∗in| > 1.

Essentially, if two augmentations co-occur (see Corr. 3.4) from two or more different natural samples,
such that the samples do not share the same underlying label, we refer to such samples as inconsistent
(also see Figure 1). Now, we assume the behavior of h on inconsistent samples is fixed such that
h(g) = y, for some fixed y ∈ Y ∗in. This allows us to use h to induce a r-way partition over X , such
that each sample, g, belongs to a partition, Sh(g). Further, because h incurs error on inconsistent
samples, α can be lower bounded by the ratio of inconsistent to total samples. To this end, we use
GED to identify inconsistent samples by identifying disagreement amongst partitions as follows.
Lemma 3.6 (Using GED to identify inconsistent samples). Let g, g′ ∈ X and GED(g, g′) ≤ 2δ
such that g ∈ Si ∧ g′ ∈ Sj and i 6= j, where partitions are induced by h. Then, at least one
g̃ ∈ {g, g′} must be an inconsistent sample.

Note that the above lemma does not rely on ground-truth label information to identify inconsistent
samples, but only GED from natural samples. Given that the error on inconsistent samples is
irreducible, as it is unclear which y ∈ Yin is correct, we can lower bound the error of h as follows:
Corollary 3.7 (Error bound due to Inconsistent Samples). The error of h can be lower-bounded as

α ≥
∑r

i

∑
g∈Si,g′ /∈Si

1(GED(g, g′) ≤ 2δ)

|X | . (1)

Here, the number of inconsistent samples can be approximated via∑r
i

∑
g∈Si,g′ /∈Si

1(GED(g, g′) ≤ 2δ) and |X | can be estimated using a combinatorial
counting procedure. Thus, the above corollary reflects the fact that error on inconsistent samples
cannot be reduced due to label un-identifiability.

As mentioned before, the generalization bound by HaoChen et al. [15] for SpecLoss is a function of
α. Deriving a lower bound on α will allow us to comment exactly when error is likely to become
vacuous. To this end, we need a final definition of partition dissimilarity that induces a notion of
clustering of similar datapoints in our analysis.
Definition 3.8 (Partition Dissimilarity). Let S1, . . . , Sr be an r-way partition of X . Then, we define
the partition dissimilarity for a given partition as

φX (Si) =

∑
g∈S,g′ /∈S 1(GED(g, g′) ≤ 2δ)∑
g∈S |{g′|GED(g, g′) ≤ 2δ}| . (2)

Intuitively, we use the partitions induced by h as a proxy for class labels and co-occurrence as a
notion of similarity (see Lemma 3.2). Then, the quality of the partition is determined by the ratio

5

of the samples that belong to a given partition, but are also similar to samples from other partitions,
to the total number of samples that are close to the partition. Note that partition dissimilarity is an
often studied term in clustering problem and a general version of conductance, the property used for
spectral clustering on a similarity graph which forms the basis of SpecLoss [15].

We are now ready to state our main result that re-derives the generalization error of SpecLoss in terms
of GGAs, using the definitions of co-occurring pairs (Def. 3.4) and dissimilar partitions (Def. 3.8).
Notably, we will decompose bound in terms of the number of co-occurring augmentation-pairs within
the same partition and the number of pairs that cross partitions, which are defined respectively as,
λ =

∑
g∈S∗,g′∈S∗ 1(GED(g, g′) ≤ 2δ), and µ =

∑
g∈S∗,g′ /∈S∗ 1(GED(g, g′) ≤ 2δ).

Theorem 3.9 (Generalization Bound for SpecLoss with GGA). Assume the representation dimension
k ≥ 2r and Assm. 3.7 holds for α ≥ 0. Let F be a hypothesis class containing a minimizer f∗pop
of SpecLoss, L(f), which produces a bk/2c-way partition of X denoted by {S∗}. Let its most
dissimilar partition have dissimilarity denoted by ρbk/2c = mini φ(Si ∈ {S∗}). Then, f∗pop has a
generalization error bounded as:

E(f∗pop) ≤ Õ
(
α/ρ2bk/2c

)
= Õ

(
r

|X |

[
µ+ 2λ+

λ2

µ

])
, (3)

Discussion. By deriving expressions for α and φ as well as equivalently representing the original
bound in terms of the more intuitive expressions, µ and λ, we can gain insights into several empirical
and intuitive observations in graph CL. We will study these points further in Sec. 4.2 via a synthetic
dataset that was motivated from the analysis above and allows more fine-grained evaluation.

Invariance and Relevance of Augmentations. GGAs assume that limited changes to a graph’s struc-
ture will not alter its semantics and aggressively increasing augmentation strength will eventually
harm generalization. However, through our analysis, we see that the generalization error bound
is non-decreasing with respect to δ when λ2

µ ≤ µ, i.e., the number of cross partition pairs dom-
inates the expression, as this ratio depends on δ. Indeed, for some δ′ = δ + ε, where ε > 0,
µδ′ =

∑
g∈Si,g′ /∈Si

1(GED(g, g′) ≤ 2δ) +
∑

g∈Si,g′ /∈Si
1(2δ ≤ GED(g, g′) ≤ 2δ + ε) =

µδ +
∑

g∈Si,g′ /∈Si
1(2δ ≤ GED(g, g′)) ≤ 2δ + ε. Thus, the number of cross partitions is always

non-decreasing with respect to δ. Thus, we clearly see that when augmentations are agnostic of the
task, their corresponding invariances yield poor representations with vacuous generalization.

Separability. Our analysis also demonstrates that the success of a particular augmentation strength is
dependent on the GED between samples belonging to different classes. Given that inter-class GED is
an intrinsic dataset property that proxies dataset separability, this implies that there are combinations
of datasets and augmentation strengths for which GGAs will necessarily incur vacuous bounds, even
for low augmentation strengths. In such settings, augmentations that improve recoverability and
induce task-relevant invariances are necessary to improve downstream task performance. While many
works have conjectured that task-relevant graph augmentations will improve performance, ours is the
first to demonstrate why they are needed. Indeed, in Sec. 4.1, we find that GGAs are unable to induce
such invariances on benchmark datasets.

Recoverability. As shown in Thm. 3.9, better recoverability will improve the tightness of the
generalization bound. However, we see that from Coll. 3.7, that recoverability will only decrease as δ
increases and as discussed above, there exist datasets where GGAs are not amenable. This further
motivates the need for task-relevant augmentations so that the effects of poor augmentations are
disentangled from method performance.

4 Experimental Verification
In this section, we conduct experiments using both standard benchmarks (Sec. 4.1) and our proposed
synthetic dataset generation process (Sec. 4.2) to empirically validate our theoretical conclusions.

4.1 A Closer Look at the Effectiveness of Invariance to GGA

In Sec. 3, we demonstrated GGAs can harm generalization by influencing recoverability and sep-
arability. Though computing these properties directly is intractable on benchmark datasets, our
analysis for graph datasets and prior works on vision [17, 18, 20] show that if augmentations induce
invariances that are task-relevant, downstream error should reduce. This corresponds to meaningfully

6

related samples having similar representations (recoverable) and unrelated samples having dissimilar
representations (separable). However, by using augmentations that perturb topology or features
constrained to a small fraction of the original graph, existing graph SSL methods assume such pertur-
bations are relevant to the downstream task. If this is the case, our analysis suggests we should see
improvement in performance with increased invariance; else, we will witness no tangible correlation.

Experimental Setup: We evaluate seven graph SSL methods on seven, popular benchmark datasets.
Specifically, we use the following representative algorithms: (i) GraphCL [22], a popular and
effective graph CL method; (ii) GAE, Graph Autoencoder [44] that uses a reconstruction cost to
learn representations; (iii) Augmentation-Augmented Autoencoder [45], which we adapt to graphs to
create the Augmentation Augmented Graph Autoencoder (AAGAE) that minimizes the reconstruction
error between the reconstruction for an augmented sample and the original; (iv) SpecCL, which uses
the SpecLoss [15] for contrastive training; (v) SimSiam [2], a positive-sample-only framework that
uses stop gradient; (vi) BYOL [21], which avoids negatives samples by using asymmetric branches
alongside a stop gradient operation; and (vii) Untrained representations, which have been observed
to be surprisingly competitive baselines for graph-based learning [46, 47, 31, 42]. To the best of our
knowledge, ours is the first work to evaluate AAGAE and SpecCL for graph SSL. We use the same
augmentations and encoder architecture as GraphCL. We add a straight-through estimator [48] to
GAE/AAGAE’s decoder for better training. See Appendix F for further details.

0.15 0.10 0.05 0.00 0.05 0.10
Invariance

0.03

0.02

0.01

0.00

0.01

0.02

Ac
cu

ra
cy

Method
aagae
byol
gae
graphcl
simsiam
specloss
Dataset
COLLAB
DD
IMDB-BINARY
MUTAG
NCI1
PROTEINS
REDDIT-BINARY

Figure 2: Invariance vs. KNN Acc. The change in in-
variance (Inv.) and accuracy w.r.t. to an untrained model
is plotted, where Inv. is measured according to [19].
We see: Inv. has not significantly increased for many
datasets/methods, improved Inv. does not necessarily en-
tail better performance (see Reddit), and AAGAE/GAE
often sees decreased Inv., likely due to use of a decoder.

GGAs fail to induce task-relevant invariance
on standard benchmarks. To measure whether
augmentations have induced invariance, we mea-
sure recoverability using the representational
similarity measures introduced by Wang and
Isola [19]. Called Alignment and Uniformity,
the two measures are a generalized version of
the InfoNCE loss and also encompass other
contrastive losses, such as SpecLoss. Formally,
alignment is defined as: Lalign (f ;A) ,
E(g,g′)∼A(·|g)

[
‖f(g)− f(g′)‖22

]
. To deter-

mine if the invariance is task-relevant, we
determine if improved alignment is indicative
of improved performance with respect to an
untrained baseline model.

Results. Fig. 2 shows the difference in invariance
and kNN with respect to an untrained model’s
accuracy, averaged over 10 seeds. As can be
seen, there is not noticeable correlation between
invariance and accuracy, especially with respect to the untrained baseline. Notably, on the Reddit
dataset, all methods have improved invariance, but do not have significantly better kNN accuracy.
Overall, this experiment demonstrates that learning invariance to GGAs is both difficult and often
unrelated to task performance, clearly indicating the GGAs struggle to induce task-relevant invariances
and do not support recoverable, separable latent spaces needed for good generalization. Moreover,
given that GGAs have unknown recoverability on standard datasets, and that trained models were not
able to sufficiently outperform untrained baselines, there is need for new datasets where it is possible
to go beyond GGA and where we can better understand the merits of different graph SSL paradigms.

4.2 Evaluating Graph SSL Methods in a Controlled Setting

Our analysis indicates the role played by recoverability and separability under task-relevant invari-
ances dramatically influences generalization performance. However, given our results that GGAs do
not enable these properties and the fact that task-relevance is difficult to define on existing benchmark
datasets, empirical verification of our claims requires a dataset that directly enables control over
the data generation process. We thus introduce a synthetic dataset that allows us to illustrate how
invariance and class separability must be jointly considered when designing augmentations.

7

Style Ratio: 0.5 Style Ratio: 1.0 Style Ratio: 2.0 Style Ratio: 3.0

Figure 3: Synthetic Dataset Generation. A class-specific motif completely determines the label, and is
therefore considered “content". To vary the amount of style, the size of the background tree graph is a ratio
of the number of “content” nodes. Our dataset goes beyond binary benchmarks and allows for content-aware
augmentations, a critical component to understanding graph SSL.

4.2.1 Synthetic Data Generation Process

Given that standard benchmark datasets and augmentation practices are uninformative when eval-
uating the recoverability and invariance of augmentations, we propose a synthetic data generation
process that allows us to understand how the data-dependent assumptions of SSL hold for graph
datasets. This process not only enables oracle augmentations where recoverability is known, but also
allows us some control over dataset separability.

Our synthetic dataset generation process is designed in accordance to a latent variable model which
assumes that the underlying data generation latent representation space can be partitioned into style
and content. Here, style represents information that is irrelevant to the downstream task and can
be perturbed (i.e., augmented) without changing sample semantics, while content represents task-
relevant information and should be preserved. We note that while von Kügelgen et al. [17] used the
same latent variable model to demonstrate that SSL with data augmentation is able to recover features
which disentangle style vs. content, our objective for using this perspective is to develop a grounded
benchmark that provides adjustable knobs over content (task-relevant) and style (task-irrelevant)
information. These knobs allow us to understand how data-centric properties affect the performance
of different graph SSL algorithms (see Fig. 4). While designing content-aware augmentations for
arbitrary graph datasets is a hard problem [42], with oracle knowledge of the data generation process,
we can evaluate content-aware augmentations (CAAs) with high recoverability at varying levels of
separability, which we approximate through different style levels.

Generation Process: The proposed data generation process has three components: a set of C
motifs,M, that uniquely determine C classes; a random graph generator, RBG(n), parameterized
by the number of nodes (we can equivalently define this based on number of edges); and κ, the style
multiplier, which controls how much irrelevant information a sample contains. To generate a sample,
we attach a randomly generated background graph (i.e., style component) to a motif (i.e., content)
according to the style multiplier. This simple process addresses several limitations often encountered
in graph CL evaluation. Specifically, it (i) allows for varying levels of content-aware augmentation
(i.e., edges that can be perturbed in the background graph without harming the motif); (ii) is easily
extended beyond binary classification; (iii) contains relatively large number of samples; and (iv)
offers a natural test bed for GNN size generalization or transfer learning [49].

4.2.2 Difficulties in Recovering Style Invariant Representations

Several real graph datasets can be understood through a style vs. content perspective. For example, in
drug discovery tasks [50], molecules can be split into functional groups (content) and carbon rings
or scaffold structure (style). One may thus ask: how does varying levels of style vs. content affect
the performance of graph URL algorithms, and how do different algorithms benefit from the use of
content-aware augmentations? To answer these questions, we conduct the following experiment:

Experimental Setup. Let C = 6, κ = 4 and define RBG(n) through a random tree generator,
where n is number of the nodes belonging the motif, scaled by κ. Node features are a constant
10-dimensional vector. To increase task difficulty, we randomly insert between 1-3 motif copies into
each sample. Using the specified instaniation of the generation process, we train GraphCL, AAGAE,
GAE, and SpecLoss with content-preserving edge dropping and random edge dropping at 20%
and 60% augmentation strength. We also evaluate two recently proposed automated augmentation
methods, JOAO [29] and AD-GCL[31], as well as SimGRACE [32], which uses implicit, weight
space perturbations. JOAO is trained with a GGA prior and an expanded GGA prior that includes

8

1 2 3 4 5 6 7 8
SvC Ratio

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

Graph CL

CAA GGA None 0.2 0.6 AD-GCL JOAO+CAA JOAO+GGA SimGRACE

1 2 3 4 5 6 7 8
SvC Ratio

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

SpecLoss

1 2 3 4 5 6 7 8
SvC Ratio

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

Reconstruction

1 2 3 4 5 6 7 8
SvC Ratio

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

Automated/Implicit

Figure 4: Style Invariance over Paradigms: We evaluate several SSL algorithms with different augmentation
paradigms and changing style vs. content ratios. We find several notable results: (i) CAAs induce style invariance
in contrastive methods, but GGAs do not; (ii) reconstruction methods do not recover task-relevant invariances,
even when using CAAs; and (iii) advanced augmentations methods (AD-GCL, JOAO, SimGRACE) lose
performance as style increases, indicating they do not induce style-invariance.

content-preserving edge dropping. AD-GCL is trained using a learnable edge-dropping augmentor.
A 5-layer GIN encoder is used and models are trained for 60 epochs using Adam (with a learning
rate of 0.01). After training, all models are evaluated using the linear probe protocol [1] at varying
style ratios. Given that style information is not relevant to the downstream task, we expect models
that have truly learned invariance to this information will retain strong performance across different
ratios. See Appendix F for more model and training details.

Results. We make the following observations using Fig. 4, which clearly demonstrate the value of the
proposed benchmark in studying the behavior of different SSL and augmentation paradigms. (i) In
accordance to Sec. 3, we empirically see that both GraphCL and SpecLoss do not loss performance as
the style ratio increases when using CAAs, indicating the model has learned task-relevant invariances.
(ii) Auto-encoding reconstruction methods are an alternative SSL paradigm, but unfortunately also
struggle to recover style-invariant solutions. Moreover, the use of the CAAs with such methods does
not improve performance as effectively as in contrastive paradigms. (iii) For the first time, we are
able to evaluate whether automated methods, which aim to recover strong augmentations without
expensive hyper-parameter tuning or hand designing, are able to recover an optimal augmentation
that generalizes across style ratios. Unfortunately, we see both AD-GCL [31] and JOAO [29] lose
performance as the style ratio increases, indicating such a solution has not been found. Indeed, JOAO
is unable to find such a solution even when the augmentation prior includes the oracle CAAs. These
results not only highlight the brittleness of such automated methods, but indicate our benchmark
is a necessary testbed for such methods. (iv) To avoid corrupting graph semantics when using
input-space augmentations, SimGRACE [32] instead uses implicit, weight-space augmentations.
However, we find, despite tuning the perturbation parameter, SimGRACE cannot recover strong,
style-invariant performance. Overall, using our grounded synthetic benchmark, we are not only
able to able to compare the performance of graph SSL algorithms when data-centric properties are
supported (e.g., recoverable augmentations), but are also able to identify limitations of advanced
augmentation methods that were not apparent using standard benchmarks.

4.2.3 Invariance vs. Separability

0.4 0.6 0.8 1.0
Invariance

0

2

4

6

8

10

12

Se
pa

ra
bi

lit
y

CAA
GGA

0.030

0.148

0.337

0.553

0.804

1.085

1.385

1.714

2.058

2.442

0.82

3.39

6.51

9.81

13.70

16.56

31.13

49.72

70.82

91.02

Figure 5: Invariance vs. Separability. On our syn-
thetic data with style-to-content ratio κ = 6 and 20%
augmentation strength, GraphCL trained with ran-
dom augmentations produces representations with
high invariance but low separability. In contrast, us-
ing content preserving augmentations leads to almost
as high invariance, but much greater separability.

We now use our synthetic benchmark to investigate
how augmentation recoverability influences the bal-
ance of invariance and separability in the learned
latent space. Considered in isolation, invariance can
be trivially satisfied through representation collapse,
i.e., all samples are mapped to highly similar repre-
sentations. However, such representations are not
separable as they cannot meaningfully distinguish
classes. Therefore, in the following experiment, we
jointly consider these properties to understand the
benefits of CAAs.

Experimental Setup. Using a synthetic dataset at
κ = 6, we respectively train GraphCL with content-
preserving and random edge dropping at 20% aug-

9

mentation strength. We compute an invariance score
for each natural sample by computing the average cosine similarity of its representation with that 30
different augmentations. We compute a separability score by dividing the maximum cosine similarity
to a sample of the same class by the maximum cosine similarity to a sample of another class.

Results. Figure 5 shows kernel density estimates of the number of samples that have a given
invariance and separability, when training with GGA or CAA. GGA induces representations with
somewhat higher invariance but much lower separability scores, suggesting some representation
collapse are occurred. Indeed, with a higher augmentation strength (60%), we found that using GGA
produced invariance and separability scores very close to 1 for all samples, indicating strong collapse.
On the other hand, CAA helps GraphCL achieve over an order of magnitude higher separability and
still preserves comparably high invariance. We observed similar trends for SpecLoss.

Invariance vs. Separability in Realistic Settings. In App. C.2, we replicate this experiment
using BACE [51], a molecule-protein interaction dataset, and the biochemistry-based augmentations
proposed by Sun et al. [52] as CAAs. We find that our observations continue to hold in this real-world
use-case, demonstrating the generality of our theory and practicality of our synthetic benchnmark.

5 Conclusion

In this work, we rigorously contextualize, theoretically and empirically, the role of data-dependent
properties for graph CL. We propose a novel generalization analysis which, for the first time, formal-
izes the limitations of using GGAs in graph CL. As we note in Sec. 3, our results can be extended
to other contrastive frameworks by leveraging our insight on representing graph augmentations as
composable graph-edit operations and extending the contemporary work of Saunshi et al. [41]. We
suspect a similar extension can also be made for predictive methods like BYOL by using the analysis
of Wei et al. [28] (see App. C.1 for further discussion). In line with our theory, we empirically
demonstrate that GGAs fail to induce useful task-relevant invariances on standard benchmarks. We
note our empirical results already demonstrate the generality of our results across different methods.
Moreover, our insights motivate the design of a principled synthetic benchmark that provides a
controlled setting for studying the role of data-dependent properties in graph SSL. Our benchmark
also serves as a useful testbed for evaluating the abilities of automated or implicit augmentations
techniques. Given the shortcomings we illustrate for such methods on synthetic datasets, we argue
the development of domain specific strategies [52] may be a more fruitful direction for future work.

Acknowledgements

This work was performed under the auspices of the U.S. Department of Energy by the Lawrence
Livermore National Laboratory under Contract No. DE-AC52-07NA27344, Lawrence Livermore
National Security, LLC.and was supported by the LLNL-LDRD Program under Project No. 21-ERD-
012. PT was an intern at Lawrence Livermore National Labs while working on this project. ESL was
partly supported via NSF award CNS-2008151.

10

References
[1] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hinton. A simple framework

for contrastive learning of visual representations. In Proc. Int. Conf. on Machine Learning
(ICML), 2020.

[2] Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In Proc. Int.
Conf. on Computer Vision and Pattern Recognition (CVPR), 2021.

[3] Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Barlow twins: Self-
supervised learning via redundancy reduction. In Proc. Int. Conf. on Machine Learning (ICML),
2021.

[4] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross B. Girshick. Momentum contrast
for unsupervised visual representation learning. In Proc. Int. Conf. on Computer Vision and
Pattern Recognition (CVPR). IEEE, 2020.

[5] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, and Piotr Bojanowski. Unsuper-
vised learning of visual features by contrasting cluster assignments. In Proc. Adv. in Neural
Information Processing Systems (NeurIPS), 2020.

[6] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski,
and Armand Joulin. Emerging properties in self-supervised vision transformers. In Proc. Int.
Conf. on Computer Vision (ICCV), 2021.

[7] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding. In Proc. Euro.
Conf. on Computer Vision (ECCV), 2020.

[8] Aäron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive
predictive coding. In Proc. Adv. in Neural Information Processing Systems (NeurIPS), 2018.

[9] R. Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Philip Bachman,
Adam Trischler, and Yoshua Bengio. Learning deep representations by mutual information
estimation and maximization. In Proc. Int. Conf. on Learning Representations (ICLR), 2019.

[10] Dan Hendrycks, Mantas Mazeika, Saurav Kadavath, and Dawn Song. Using self-supervised
learning can improve model robustness and uncertainty. In Proc. Adv. in Neural Information
Processing Systems (NeurIPS), 2019.

[11] Hong Liu, Jeff Z. HaoChen, Adrien Gaidon, and Tengyu Ma. Self-supervised learning is more
robust to dataset imbalance. In Proc. Int. Conf. on Learning Representations (ICLR), 2022.

[12] Linus Ericsson, Henry Gouk, and Timothy M. Hospedales. How well do self-supervised models
transfer? In Proc. Int. Conf. on Computer Vision and Pattern Recognition (CVPR), 2021.

[13] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay S. Pande, and Jure
Leskovec. Strategies for pre-training graph neural networks. In Proc. Int. Conf. on Learning
Representations (ICLR), 2020.

[14] Sanjeev Arora, Hrishikesh Khandeparkar, Mikhail Khodak, Orestis Plevrakis, and Nikunj
Saunshi. A Theoretical Analysis of Contrastive Unsupervised Representation Learning. In Proc.
Int. Conf. on Machine Learning (ICML), 2019.

[15] Jeff Z. HaoChen, Colin Wei, Adrien Gaidon, and Tengyu Ma. Provable guarantees for self-
supervised deep learning with spectral contrastive loss. In Proc. Adv. in Neural Information
Processing Systems (NeurIPS), 2021.

[16] Yonglong Tian, Chen Sun, Ben Poole, Dilip Krishnan, Cordelia Schmid, and Phillip Isola. What
makes for good views for contrastive learning? In Proc. Adv. in Neural Information Processing
Systems (NeurIPS), 2020.

[17] Julius von Kügelgen, Yash Sharma, Luigi Gresele, Wieland Brendel, Bernhard Schölkopf,
Michel Besserve, and Francesco Locatello. Self-supervised learning with data augmentations
provably isolates content from style. In Proc. Adv. in Neural Information Processing Systems
(NeurIPS), 2021.

11

[18] Roland S. Zimmermann, Yash Sharma, Steffen Schneider, Matthias Bethge, and Wieland
Brendel. Contrastive learning inverts the data generating process. In Proc. Int. Conf. on
Machine Learning (ICML), 2021.

[19] Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning through
alignment and uniformity on the hypersphere. In Proc. Int. Conf. on Machine Learning (ICML),
2020.

[20] Senthil Purushwalkam and Abhinav Gupta. Demystifying contrastive self-supervised learning:
Invariances, augmentations and dataset biases. In Proc. Adv. in Neural Information Processing
Systems (NeurIPS), 2020.

[21] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H. Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Ávila Pires, Mohammad Gheshlaghi Azar, Bilal Piot,
Koray Kavukcuoglu, Rémi Munos, and Michal Valko. Bootstrap your own latent - A new
approach to self-supervised learning. In Proc. Adv. in Neural Information Processing Systems
(NeurIPS), 2020.

[22] Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph contrastive
learning with augmentations. In Proc. Adv. in Neural Information Processing Systems (NeurIPS),
2020.

[23] Kaveh Hassani and Amir Hosein Khas Ahmadi. Contrastive multi-view representation learning
on graphs. In Proc. Int. Conf. on Machine Learning (ICML), 2020.

[24] Shantanu Thakoor, Corentin Tallec, Mohammad Gheshlaghi Azar, Medhi Azabou, Eva Dyer,
Rémi Munos, Petar Velickovic, and Michal Valko. Large-scale representation learning on graphs
via bootstrapping. In Proc. Int. Conf. on Learning Representations (ICLR), 2022.

[25] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Graph contrastive
learning with adaptive augmentation. In Proc. ACM Conf. on World Wide Web (WWW), 2020.

[26] Fan-Yun Sun, Jordan Hoffmann, Vikas Verma, and Jian Tang. Infograph: Unsupervised and
semi-supervised graph-level representation learning via mutual information maximization. In
Proc. Int. Conf. on Learning Representations (ICLR), 2020.

[27] Yao-Hung Hubert Tsai, Yue Wu, Ruslan Salakhutdinov, and Louis-Philippe Morency. Self-
supervised learning from a multi-view perspective. In Proc. Int. Conf. on Learning Representa-
tions (ICLR), 2021.

[28] Colin Wei, Kendrick Shen, Yining Chen, and Tengyu Ma. Theoretical analysis of self-training
with deep networks on unlabeled data. In Proc. Int. Conf. on Learning Representations (ICLR),
2021.

[29] Yuning You, Tianlong Chen, Yang Shen, and Zhangyang Wang. Graph contrastive learning
automated. In Proc. Int. Conf. on Machine Learning (ICML), 2021.

[30] Kezhi Kong, Guohao Li, Mucong Ding, Zuxuan Wu, Chen Zhu, Bernard Ghanem, Gavin Taylor,
and Tom Goldstein. FLAG: adversarial data augmentation for graph neural networks. CoRR,
2020.

[31] Susheel Suresh, Pan Li, Cong Hao, and Jennifer Neville. Adversarial graph augmentation to
improve graph contrastive learning. In Proc. Adv. in Neural Information Processing Systems
(NeurIPS), 2021.

[32] Jun Xia, Lirong Wu, Jintao Chen, Bozhen Hu, and Stan Z. Li. Simgrace: A simple framework
for graph contrastive learning without data augmentation. In Proc. ACM Conf. on World Wide
Web (WWW), 2022.

[33] Adrien Bardes, Jean Ponce, and Yann LeCun. Vicreg: Variance-invariance-covariance regular-
ization for self-supervised learning. In Proc. Int. Conf. on Learning Representations (ICLR),
2021.

12

[34] Weiran Huang, Mingyang Yi, and Xuyang Zhao. Towards the Generalization of Contrastive
Self-Supervised Learning. arXiv, abs/2111.00743, 2021.

[35] Yuandong Tian, Xinlei Chen, and Surya Ganguli. Understanding self-supervised Learning
Dynamics without Contrastive Pairs. In Proc. Int. Conf. on Machine Learning (ICML), 2021.

[36] Li Jing, Pascal Vincent, Yann LeCun, and Yuandong Tian. Understanding dimensional collapse
in contrastive self-supervised learning. arXiv preprint arXiv:2110.09348, 2021.

[37] Ashwini Pokle, Jinjin Tian, Yuchen Li, and Andrej Risteski. Contrasting the landscape of
contrastive and non-contrastive learning. arXiv preprint arXiv:2203.15702, 2022.

[38] Liu Ziyin, Ekdeep Singh Lubana, Masahito Ueda, and Hidenori Tanaka. What shapes the loss
landscape of self-supervised learning? arXiv preprint arXiv:2210.00638, 2022.

[39] Maria-Florina Balcan, Avrim Blum, and Ke Yang. Co-training and expansion: Towards bridging
theory and practice. In Proc. Adv. in Neural Information Processing Systems (NeurIPS), 2004.

[40] Ekdeep Singh Lubana, Chi Ian Tang, Fahim Kawsar, Robert P Dick, and Akhil Mathur. Or-
chestra: Unsupervised federated learning via globally consistent clustering. arXiv preprint
arXiv:2205.11506, 2022.

[41] Nikunj Saunshi, Jordan Ash, Surbhi Goel, Dipendra Misra, Cyril Zhang, Sanjeev Arora, Sham
Kakade, and Akshay Krishnamurthy. Understanding contrastive learning requires incorporating
inductive biases. In Proc. Int. Conf. on Machine Learning (ICML), 2022.

[42] Puja Trivedi, Ekdeep Singh Lubana, Yujun Yan, Yaoqing Yang, and Danai Koutra. Augmenta-
tions in graph contrastive learning: Current methodological flaws & towards better practices. In
Proc. ACM Conf. on World Wide Web (WWW), 2022.

[43] SueYeon Chung, Daniel D. Lee, and Haim Sompolinsky. Classification and geometry of general
perceptual manifolds. Phys. Rev. X, 8, 2018.

[44] Thomas N. Kipf and Max Welling. Variational graph auto-encoders. In Bayesian Deep Learning
Workshop (NeurIPS), 2016.

[45] William Falcon, Ananya Harsh Jha, Teddy Koker, and Kyunghyun Cho. AAVAE: augmentation-
augmented variational autoencoders. CoRR, 2021.

[46] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In Proc. Int. Conf. on Learning Representations (ICLR), 2017.

[47] Minghao Xu, Hang Wang, Bingbing Ni, Hongyu Guo, and Jian Tang. Self-supervised graph-
level representation learning with local and global structure. In Proc. Int. Conf. on Machine
Learning (ICML), 2021.

[48] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax.
In Proc. Int. Conf. on Learning Representations (ICLR), 2017.

[49] Gilad Yehudai, Ethan Fetaya, Eli Meirom, Gal Chechik, and Haggai Maron. From local
structures to size generalization in graph neural networks. In Proc. Int. Conf. on Machine
Learning (ICML), 2021.

[50] Marinka Zitnik, Rok Sosič, and Jure Leskovec. Prioritizing network communities. Nature
Communications, 2018.

[51] Govindan Subramanian, Bharath Ramsundar, Vijay Pande, and Rajiah Aldrin Denny Denny.
Computational modeling of β-secretase 1 (bace-1) inhibitors using ligand based approaches.
Journal of Chemical Information and Modeling, 2016.

[52] Mengying Sun, Jing Xing, Huijun Wang, Bin Chen, and Jiayu Zhou. Mocl: Data-driven
molecular fingerprint via knowledge-aware contrastive learning from molecular graph. In Proc.
ACM Int. Conf. on Knowledge Discovery & Data Mining (SIGKDD), 2021.

13

[53] Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric.
In ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

[54] Yanqiao Zhu, Yichen Xu, Qiang Liu, and Shu Wu. An empirical study of graph contrastive
learning. In Proc. Neural Information Processing Systems (NeurIPS), Datasets and Benchmarks
Track, 2021.

[55] Ben Poole, Sherjil Ozair, Aaron van den Oord, Alexander A. Alemi, and George Tucker. On
Variational Bounds of Mutual Information. In Proc. Int. Conf. on Machine Learning (ICML),
2019.

[56] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In Proc. Int. Conf. on Learning Representations (ICLR), 2019.

[57] Pinar Yanardag and S. V. N. Vishwanathan. Deep graph kernels. In Proc. ACM Int. Conf. on
Knowledge Discovery & Data Mining (SIGKDD), 2015.

[58] Nils M. Kriege and Petra Mutzel. Subgraph matching kernels for attributed graphs. In Proc. Int.
Conf. on Machine Learning (ICML), 2012.

[59] Karsten M. Borgwardt, Cheng Soon Ong, Stefan Schönauer, S. V. N. Vishwanathan, Alexander J.
Smola, and Hans-Peter Kriegel. Protein function prediction via graph kernels. In Proceedings
Thirteenth International Conference on Intelligent Systems for Molecular Biology, 2005.

[60] Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and Karsten M.
Borgwardt. Weisfeiler-lehman graph kernels. Journal of Machine Learning Research (JMLR),
2011.

[61] Nikil Wale and George Karypis. Comparison of descriptor spaces for chemical compound
retrieval and classification. In Proc. Int. Conf. on Data Mining (ICDM), 2006.

[62] Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding, Kuansan
Wang, and Jie Tang. GCC: graph contrastive coding for graph neural network pre-training. In
Proc. ACM Int. Conf. on Knowledge Discovery & Data Mining (SIGKDD), 2020.

[63] Zekarias T. Kefato and Sarunas Girdzijauskas. Self-supervised graph neural networks without
explicit negative sampling. In Int. Workshop on Self-Supervised Learning for the Web (WWW’21),
2021.

[64] Tong Zhao, Yozen Liu, Leonardo Neves, Oliver J. Woodford, Meng Jiang, and Neil Shah. Data
augmentation for graph neural networks. In Proc. Association for Advancment of Artificial
Intelligence (AAAI), 2020.

[65] Ali Shafahi, Mahyar Najibi, Amin Ghiasi, Zheng Xu, John P. Dickerson, Christoph Studer,
Larry S. Davis, Gavin Taylor, and Tom Goldstein. Adversarial training for free! In Proc. Adv.
in Neural Information Processing Systems (NeurIPS), 2019.

[66] Yixin Liu, Shirui Pan, Ming Jin, Chuan Zhou, Feng Xia, and Philip S. Yu. Graph self-supervised
learning: A survey. IEEE Trans. on Knowledge and Data Engineering, 2022.

[67] Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and Thomas S. Huang. Generative
image inpainting with contextual attention. In Proc. Int. Conf. on Computer Vision and Pattern
Recognition (CVPR), 2018.

[68] Yuning You, Tianlong Chen, Zhangyang Wang, and Yang Shen. When does self-supervision
help graph convolutional networks? In Proc. Int. Conf. on Machine Learning (ICML), 2020.

[69] Petar Velickovic, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio, and R. Devon
Hjelm. Deep graph infomax. In Proc. Int. Conf. on Learning Representations (ICLR), 2019.

14

A Contributions

PT: Led project formulation, writing, designing & running experiments, and discussion. PT originally
conceived of representing generic graph augmentations using composable, graph edit operations
to derive a generalization bound based on SpecLoss and made early attempts at this derivation, as
well as its interpretation. ESL: Contributed to project formulation, writing, experimental design,
and discussion. ESL led theory section, deriving Defn. 3.8 (partition dissimilarity) and Thm 3.9
(generalization bound). ESL and PT refined the analysis together. ESL and PT jointly conceived of
using the synthetic dataset and corresponding experiments. PT led the corresponding section. MH:
Contributed to running experiments, discussion, writing, and figure generation. DK:assisted in early
project ideation. JJT: senior advisor, contributed to project formulation, discussion, writing, and
experimental design.

B Reproducibility and Broader Impact

For reproducibility, we have included code at https://github.com/pujacomputes/datapropsgraphSSL.
git. Code is under-development and will be finalized soon. Our code uses the open source torch
geometric [53] and PyGCL [54] frameworks.

Self-supervised representation learning is an increasingly popular paradigm for graph representation
learning. Critical to many SSL frameworks is the choice of augmentation strategy. As we discuss
in this paper, the properties or invariances induced by a particular augmentation strategy are often
not well-understood. Failure to understand these properties can lead to unintended effects when the
representations are used in downstream tasks. We hope that our work is useful in better understanding
the role of augmentations and other data-centric properties on graph representation learning.

C Extended Discussion

C.1 Extending our Analysis to other Loss Functions

While our analysis focuses on the spectral contrastive loss (SpecLoss) [15] for ease of exposition, it
can also be extended to other contrastive loss functions and predictive methods, such as BYOL [21].
As we noted in Sec. 2, this can be easily accomplished by leveraging our insights on representing
graph augmentations through composable graph-edit operations and extending the analyses of Saunshi
et al. [41] or Wei et al. [28].

Specifically, the contemporary work of Saunshi et al. proposes a general analysis of contrastive loss
functionals and yields a generalization bound similar to Thm. 3.9, e.g., a bound that is dependent
on similar data-centric properties and assumptions. In Sec. 3, we decompose GGAs using GED,
and then derive expressions for data-centric properties, such as partition dissimilarity, using this
decomposition. Since the focus of our analysis is on understanding these data-centric properties in
terms of intrinsic dataset attributes (e.g., GED between samples), our theory is complementary to
the strategy used by Saunshi et al. Indeed, SpecLoss can be replaced with an alternative contrastive
loss functional and adapting the analysis conducted in Sec. 3, we can extend our results to other
contrastive losses. For predictive methods, we can leverage recent work by Wei et al. [28] which
provides an analysis for unsupervised learning methods for continuous data domains (such as images)
by enforcing representation consistency on augmented samples–i.e., BYOL-like methods. Critically,
Wei et al.’s generalization analysis relies on properties of the data-generating process’s latent space
and makes analogous assumptions to the unified recoverability plus separability assumption used in
our own work. Thus, our theoretical analysis can be extended to BYOL-like methods by deriving
equivalent analytical expressions for the latent-space properties used by Wei et al. Moreover, by
representing GGAs using graph edit operations, our derivation of such properties relies upon minimal
assumptions and is straight-forward. We do note, however, that Wei et al. assume that the dimension
of learned representations is equivalent to the number of classes in the dataset. This can be an invalid
assumption in unsupervised learning. In contrast, our analysis is more flexible since we only assume
the latent dimension is greater than the number of classes.

15

https://github.com/pujacomputes/datapropsgraphSSL.git
https://github.com/pujacomputes/datapropsgraphSSL.git

C.2 Evaluation on a Non-Synthetic Dataset

Our analysis in Sec. 3 motivates the need for content-aware augmentations (CAAs) by demonstrating
that generic graph augmentations (GGAs) often lead to inconsistent samples, harming representation
separability and yielding task irrelevant invariances. In Sec. 4.2, we empirically validated these
claims in a controlled setting through our new synthetic benchmark and the corresponding oracle
CAAs (see Fig. 5). To demonstrate the generality of our analysis in a practical setup, we repeat
this experiment in a realistic setting where domain knowledge is available to design content-aware
augmentations.

Experimental Setup. We analyze BACE, a molecule-protein interaction dataset. We train our models
by closely following the setup of Sun et al. [52], who propose biochemistry-inspired augmentations
for learning domain-informed representations. In our paper’s terminology, these augmentations can
be regarded as content-aware augmentations. To ensure fair comparison, we use only “local" CAA,
which does not incorporate additional “global" domain knowledge (see Sun et al. [52] for further
details). We compare against the strongest GGA baseline reported by the authors, called “mask edge
features" augmentation.

0.850 0.875 0.900 0.925 0.950 0.975 1.000
Invariance

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Se
pa

ra
bi

lit
y

CAA

GGA

2.03

7.78

13.86

19.50

26.69

31.63

39.98

46.02

51.47

56.60

1.22

4.33

7.57

11.04

14.79

18.61

22.32

25.79

29.48

34.57

Figure 6: Invariance vs. Separability. On BACE
[51], a molecule-protein interaction dataset, we com-
pare the content-aware biochemistry-inspired aug-
mentations from MoCL [52] against the GGAs. In
this real-world setting, we see that CAAs induce
better invariance and separability (Contours are not
filled to improve legibility).

For evaluation, we use the trained models to com-
pute the invariance and separability for each sample.
As in Sec. 4.2.3, an invariance score is obtained
by computing the mean cosine similarity of a sam-
ple’s representation with 30 of its augmentations.
A separability score is computed by dividing the
maximum cosine similarity of a given sample and
same-class samples by the maximum cosine similar-
ity of a given sample and different-class samples.

Results. As demonstrated in Fig. 6, the
biochemistry-inspired content-aware augmentations
induce much better invariance and separability than
the GGA. These results provide further corrobora-
tion to our synthetic dataset experiments in 5) and
theory in Sec. 3, where we argued that preserving
content improves recoverability and leads to task-
relevant invariances with better separability.

C.3 On Using Mutual Information for
Analyzing Task-Relevance in Augmentations

While several different perspectives have been re-
cently proposed for studying self-supervised learning’s behavior, many of these frameworks assume
that augmentations induce invariance to information that is irrelevant to the downstream task, ignoring
the potential for augmentations to induce invariance to task-relevant information and harm generaliza-
tion performance. However, as we discussed in Sec. 2, a notable exception is the information-theoretic
analysis of Tian et al. [16]. Specifically, Tian et al. rely upon an information-theoretic framework
that interprets the InfoNCE loss as a lower bound of mutual information between two samples.
They demonstrate under this framework that optimal augmentations are ones that maximally perturb
information irrelevant to the downstream task. However, this viewpoint suffers from the fallacy
that InfoNCE is rarely empirically correlated with mutual information. Indeed, Poole et al.[55]
demonstrate that this interpretation is only valid when mutual information between two samples is
very large. For high-dimensional inputs, this will hold true when an augmentation does not alter the
input at all, which does not align with the practical behavior of graph (or even image) augmentations.
This renders the analysis by Tian et al. relatively inexact compared to our own analysis.

In contrast, we emphasize that our analysis, which has been designed from the ground-up for graph
data and augmentations, is more exact. By representing graph augmentations as composable graph-
edit distance (GED) operations, we are able to rigorously relate the generalization abilities of a
contrastive trained model to intrinsic dataset properties. Specifically, by deriving definitions for
partition dissimilarity (Defn 3.8) and inconsistent samples (Lemma 3.6) using GED, our generalization
bound relies upon minimal additional assumptions (Thm 3.9). In Sec. 4.2.3 and Sec. C.2, we verify

16

that our theoretical observations are well supported by our experiments on both synthetic and real-
world datasets, further demonstrating the validity of our chosen analysis framework.

D Generic Graph Augmentations and Graph Edit Distance

The key insight for our analysis in Sec. 3 is that GGAs can be instantiated in a general manner as
a composition of graph edit operations. This allows us to derive a unifying assumption related to
recoverability and separability in terms of the graph edit distance (GED) between samples. Here, we
provide proofs and additional discussion for the statements made in Sec. 3. We also discuss how our
analysis can be interpreted with respect to the population augmentation graph (PAG) proposed by
HaoChen et al. [15].

Table 2: Notation

Symbol Definition

X The original or natural dataset.
X Set of all augmented data.

g ∈ X Natural (attributed) graph sample.
g, g′ ∈ X Augmented (attributed) graph samples
Eg Edge set of g.
Vg Node set of g.

γ ∈ [0, 1] Augmentation strength. Controls the % of edges or nodes that may be perturbed
by the selected augmentation.

A(g) The set of augmented samples that can be generated from Augmentation, A,
given natural sample g and γ.

A(·|g) Distribution of augmentations given a natural sample, g.
A(g|g) Probability of generating g from g given augmentation A.
f Representation Encoder, f : {X ,X} → Rd
h Classifier, h : Rd → y

D.1 GGA and Graph Edit Distance

Graph edit distance (GED) is used to capture similarity between two graphs. Intuitively, it captures
the cost of making elementary edit operations on a graph, g1, to transform it to be isomorphic to
another graph, g2. Formally,
Definition D.1 (Graph Edit Distance (Defn. 3.1)). Let the elementary graph operators (node insertion,
node deletion, edge deletion, edge addition), and the categorical feature replacement operator
comprise the set of graph edits. Then, GED (g1, g2) = min(e1,...,ek)∈P(g1,g2)

∑k
i=1 c (ei), where

P (g1, g2) is the set of paths (series of edit operations) that transforms g1 to be isomorphic to g2.
Here, ei is i-th edit operation in the path, and c(ei) is the cost for performing the edit.

Table 3: Generic Graph Augmentations vs. Graph
Edit Operators. (Reproduced. Table 1.) GGA can be
straightforwardly expressed using graph edit operators.

Augmentations Graph Edit Operators
Node Dropping Node Deletion
Edge Perturbation Edge Deletion, Edge Addition
Categorical Attribute Masking Categorical Feature Replacement Operator
Sub-graph Sampling Node Deletions

As shown in Table. 1, elementary graph edit oper-
ators can be used to straight-forwardly represent
the node dropping, edge perturbation and sub-
graph sampling generic graph augmentations
[22]. By introducing an additional graph opera-
tor, categorical feature replacement, we are also
able to consider distance with respect to categor-
ical node attributes. This operator performs a
“replacement” whenever there is a disagreement between g1 and g2’s node attributes. Then, the GED
is the total cost of structural changes and attribute disagreements between two graphs. Here, we
assign a unit cost per operation so all operations are treated equally. Assigning cost to reflect different
inductive biases over augmentations is an interesting direction left for future work. Next, we briefly
discuss some examples of using graph edit operators to represent GGAs.

Let (g, g) represent the original and augmented graph respectively, where we perform node dropping
to obtain g. Recall that the node dropping augmentation may only drop up to some fraction of
nodes in g. Then, clearly the minimum cost path can then be found using only node deletion
operators, and the GED(g, g) is bounded by the number of allowed node drops. Similarly, if g was

17

obtained through the edge perturbation augmentation, which randomly adds or removes a fraction
of edges, then GED(g, g) is bounded by the number of allowable edge modifications and can
be obtained using only edge addition/deletion operators. (Here, we allow nodes without edges to
still exist, so performing node addition/deletion would not result in a lesser GED.) The sub-graph
sampling augmentation extracts a connected sub-graph that contains at most a fraction of total nodes.
The minimum cost path can then be defined using only node deletions, e.g. where the operator is
applied to all nodes not in the sampled sub-graph. Therefore, GED(g, g) is bounded by |g| − |g|.
As discussed above, the categorical attribute masking augmentation can be recovered by directly
applying the categorical feature replacement operator. Then, the minimum cost path is then the
number of differences between the augmented and original samples’ node attributes. We formalize
the relationships between augmentations and GED in the following Lemmas.
Lemma D.2. Allowable augmentations can be expressed using GED. (Reproduction of Lemma
3.2) Let g be a natural sample in X ,A be some GGA, g ∼ A(·|g) be an augmented sample generated
from g and γ be the augmentation strength or the fraction of the graph that GGAs may modify. Then,
δ ∈ {bγ|Vg|c, bγ|Eg|c} represents the number of discrete, allowable modifications for the specified
GGA, so GED(g, g) ≤ δ. Correspondingly, we have g ∈ A(g)⇔ GED(g, g) ≤ δ.

Proof. Let P be the shortest path comprised of the edit operators defined in Table. 1 for the given
GGA, A. Then, given that at most δ discrete modifications are permitted and each operator has unit
cost, len(P) ≤ δ and

∑
ei∈P c(ei) ≤ δ. Thus, GED(g, g) ≤ δ.

Lemma D.3. Upper-bound on Size of Augmentation Set. The size of A(g) can be upper-bounded
through a combinatorial counting process. For example, to determine A(g) when the considered
augmentation is node dropping, we can delineate all sets of possible nodes with size up-to γ|Vg|.
Formally, the upper-bound on the number of samples generated using node dropping are:

|A(g)| ≤
γ|Vg|∑
j=1

|Vg|!
(|Vg| − j)!j!

We note that this value is an upper-bound because isomorphic pairs are treated as two separate
graphs. Furthermore, note the size of the augmentation set grows exponentially with graph size.
A similar counting process can be used to determine the number of possible augmented samples
obtained through edge perturbation, sub-graph sampling or feature masking. For example, the
edge-dropping augmentation could be counted as: |A(g)| ≤

∑|γEg|
j=1

|Eg|!
(|Eg|−j)!j! .

We further note that because generic graph augmentations (GGAs) perturb the graph randomly, each
augmented sample, g ∈ A(g), is equally likely, e.g., A(g|g) = 1

|A| .

E Details for Generalization Analysis

E.1 Generalization Analysis

Recently, HaoChen et al. [15] demonstrated that spectral clustering over a graph that captures
similarity of augmented data can recover class partitions as augmentations belonging to the same
class are more similar, and thus well-connected. These well-aligned partitions can be recovered
through spectral decomposition of the similarity graph and the resulting embeddings can be used
as features for downstream tasks. The SpecLoss objective, which performs this decomposition, is
then defined as follows [15]: Let g ∼ A(·|g), g+ ∼ A(·|g), given g ∈ X and g− ∼ A(·|g′), given
x′ ∼ PX ∧ g′ 6= g. Then, for the positive/negative pairs (g, g+)/(g, g−), the loss L(f) is:

−2 · Eg,g+

[
f(g)>f(g+)

]
+ Eg,g−

[(
f(g)>f(g−)

)2]
By defining SpecLoss through spectral decomposition, its generalization error can be bounded using
the recoverability and separability assumptions, which can also be understood in terms of the structure
of the similarity graph.

Indeed, in Sec. 3, we demonstrated how GGAs and GED influence recoverability and separability
by deriving an analogous generalization bound for SpecLoss that is tailored for graph data. At a

18

high-level, to find this bound, we derived expressions for recoverability, α, and separability, ρ, based
on graph edit distance, and then used these expression to recover the SpecLoss bound. We then
performed some additional manipulation to derive the final expression presented in Thm. 3.9. Here,
we provide the details and proofs behind these steps. We begin by restating the Separability plus
Recoverability assumption.
Assumption E.1 (Separability plus Recoverability Assumption, (Reproduction of Assm. 3.3)).
Let g ∈ X and y(g) be its label, and g ∼ A(·|g). Assume that there exists a classifier h, such that
h(g) = y(g) with probability at least 1− α. We refer to α as the error of h.

Now, recall from Sec. 3, that h will incur irreducible error on inconsistent samples, which are defined
as follows:
Corollary E.2. (Co-occuring augmentations.,Reproduction of Coll. 3.4) Let g ∈ X and
g, g′ ∈ X . Then, g ∼ A(g) ∧ g′ ∼ A(g) ⇔ GED(g, g′) ≤ 2δ, where δ =
min{bγ|Vg|c, bγ|Eg|c bγ|Vg|c, bγ|Eg|c}.

Proof. Recall, that g ∼ A(g) ⇐⇒ GED(g, g) ≤ δ and g′ ∼ A(g) ⇐⇒ GED(g′, g) ≤ δ.
Then, GED(g, g′) ≤ 2δ and are co-occurring augmentations as they both belong to A(g).

Definition E.3 (Inconsistent Samples, Reproduction of Defn. 3.5). Let g ∈ X , and y : X → r be a
labeling function. Further, let X in = {g|g ∈ X ∧GED(g, g) ≤ δ} be the set of natural samples that
may have generated g and Y ∗in = {y(g)|g ∈ X in} be the set of unique labels. If g is an inconsistent
sample, |Y ∗in| > 1.

Now, we fix the behavior of h on inconsistent samples such that h(g) = y, for some fixed y ∈ Y ∗in.
Then, h induces an r-way partition over X , such that each sample, g, belongs to a partition, Sh(g).
Further, because h will always incur error on inconsistent samples, α can be lower bounded by the
ratio of inconsistent to total samples. To this end, we use GED to identify inconsistent samples by
identifying disagreement amongst partitions as follows.
Lemma E.4 (Using GED to identify inconsistent samples, Reproduction of Lemma 3.6). Let
g, g′ ∈ X and GED(g, g′) ≤ 2δ such that g ∈ Si ∧ g′ ∈ Sj and i 6= j, where partitions are
induced by h. Then, at least one g̃ ∈ {g, g′} must be an inconsistent sample.

Proof. By definition, GED(g, g′) ≤ 2δ implies that at least one of the following must be true:
(i) g1 ∈ X 3 y(g1) = i ∧ GED(g1, g) ≤ δ ∧ GED(g1, g

′) ≤ δ or (ii) g2 ∈ X 3 y(g2) =
j ∧ GED(g2, g) ≤ δ ∧ GED(g2, g

′) ≤ δ. WLOG, assume (i). Now, g′ ∈ Sj ⇔ h(g) = j, so
j ∈ |Y ∗in|. However, GED(g1, g) ≤ δ, so by Lemma 3.2 and Defn. 3.5, y(g1) = i ∈ Y ∗in. Since,
i 6= j, |Y ∗in| > 1, g must be an inconsistent sample. Note, if (ii) holds, then g′ is an inconsistent
sample.

Note that the above lemma does not rely on ground-truth label information to identify inconsistent
samples, but only GED from natural samples. Given that the error on inconsistent samples is
irreducible, as it is unclear which y ∈ Yin is correct, we can lower bound the error of h as follows:
Corollary E.5 (Error bound due to Inconsistent Samples, Reproduction of Coll. 3.7). The error
of h can be lower-bounded as

α ≥
∑r
i

∑
g∈Si,g′ /∈Si

1(GED(g, g′) ≤ 2δ)

|X |
.

Here, the number of inconsistent samples can be approximated via∑r
i

∑
g∈Si,g′ /∈Si

1(GED(g, g′) ≤ 2δ) and |X | can be estimated using a combinatorial
counting procedure. Thus, the above corollary reflects the fact that error on inconsistent samples
cannot be reduced due to label un-identifiability.

Partition dissimilarity, which induces a notion of clustering of similar data-points in our analysis, can
be defined as the following:
Definition E.6 (Partition Dissimilarity, Reproduction of Defn. 3.8). Let S1, . . . , Sr be an r-way
partition of X . Then, we define the partition dissimilarity for a given partition as

φX (Si) =

∑
g∈S,g′ /∈S 1(GED(g, g′) ≤ 2δ)∑
g∈S |{g′|GED(g, g′) ≤ 2δ}|

.

19

We can now state the main result that re-derives the generalization error of SpecLoss in terms of
GGAs, using the definitions of co-occurring pairs (Def. 3.4) and dissimilar partitions (Def. 3.8).
Notably, we decompose bound in terms of the number of co-occurring augmentation-pairs within
the same partition and the number of pairs that cross partitions, which are defined respectively as,
λ =

∑
g∈S∗,g′∈S∗ 1(GED(g, g′) ≤ 2δ), and µ =

∑
g∈S∗,g′ /∈S∗ 1(GED(g, g′) ≤ 2δ).

Theorem E.7 (Generalization Bound for SpecLoss with GGA, Reproduction of Thm 3.9). Assume
the representation dimension k ≥ 2r and Assm. 3.7 holds for α ≥ 0. Let F be a hypothesis class
containing a minimizer f∗pop of SpecLoss, L(f), which produces a bk/2c-way partition of X denoted
by {S∗}. Let its most dissimilar partition have dissimilarity denoted by ρbk/2c = mini φ(Si ∈ {S∗}).
Then, f∗pop has a generalization error bounded as, where the middle term is from the original SpecLoss
bound:

E(f∗pop) ≤ Õ
(
α/ρ2bk/2c

)
= Õ

(
r

|X |

[
µ+ 2λ+

λ2

µ

])
,

Proof. The conversion from recoverability (α) and conductance (ρ) and within partition (µ) and
across partition pairs (λ), can be derived as follows. We assume that the data distribution is I.I.D and
the size of the class partitions are roughly equivalent.

E(f∗pop) ≤ Õ
(
α/ρ2bk/2c

)
= Õ

∑r
i

∑
g∈Si,g′ /∈Si

1(GED(g, g′) ≤ 2δ)

|X |
1[∑

g∈S∗,g′ /∈S∗ 1(GED(g,g′)≤2δ)∑
x∈S∗ wx

]2

E(f∗pop) ≤ Õ
(
α/ρ2bk/2c

)
= Õ

∑r
i

∑
g∈Si,g′ /∈Si

1(GED(g, g′) ≤ 2δ)

|X |

[∑
x∈S∗ wx

]2
[∑

g∈S∗,g′ /∈S∗ 1(GED(g, g′) ≤ 2δ)
]2

= Õ

r∑g∈S∗,g′ /∈S∗ 1(GED(g, g′) ≤ 2δ)

|X |

[∑
x∈S∗ wx

]2
[∑

g∈S∗,g′ /∈S∗ 1(GED(g, g′) ≤ 2δ)
]2

= Õ

 r
[∑

x∈S∗ wx

]2
|X |
[∑

g∈S∗,g′ /∈S∗ 1(GED(g, g′) ≤ 2δ)
]

= Õ

r
[∑

g∈S∗,g′ /∈S∗ 1(GED(g, g′) ≤ 2δ) +
∑

g∈S∗,g′∈S∗ 1(GED(g, g′) ≤ 2δ)
]2

|X |
[∑

g∈S∗,g′ /∈S∗ 1(GED(g, g′) ≤ 2δ)
]

= Õ

(
r

|X |

[[∑
g∈S∗,g′ /∈S∗ 1(GED(g, g′) ≤ 2δ)

]2[∑
g∈S∗,g′ /∈S∗ 1(GED(g, g′) ≤ 2δ)

]
+

2
[∑

g∈S∗,g′ /∈S∗ 1(GED(g, g′) ≤ 2δ)
∑

g∈S∗,g′∈S∗ 1(GED(g, g′) ≤ 2δ)
]

[∑
g∈S∗,g′ /∈S∗ 1(GED(g, g′) ≤ 2δ)

] +

∑
g∈S∗,g′∈S∗ 1(GED(g, g′) ≤ 2δ)∑
g∈S∗,g′ /∈S∗ 1(GED(g, g′) ≤ 2δ)

])

= Õ

(
r

|X |

[∑
g∈S∗,g′ /∈S∗

1(GED(g, g′) ≤ 2δ)

+ 2
∑

g∈S∗,g′∈S∗

1(GED(g, g′) ≤ 2δ) +

[∑
g∈S∗,g′∈S∗ 1(GED(g, g′) ≤ 2δ)

]2∑
g∈S∗,g′ /∈S∗ 1(GED(g, g′) ≤ 2δ)

])
(4)

Now, notice that the above equation can be understood as the number of inconsistent sam-
ples vs. the original samples. Let, λ =

∑
g∈S∗,g′∈S∗ 1(GED(g, g′) ≤ 2δ) and µ =∑

g∈S∗,g′ /∈S∗ 1(GED(g, g′) ≤ 2δ). Then, we have recovered the bound presented in Theorem

20

3.9.

Õ
(
α/ρ2bk/2c

)
= Õ

(
r

|X |

[∑
g∈S∗,g′ /∈S∗

1(GED(g, g′) ≤ 2δ)

+ 2
∑

g∈S∗,g′∈S∗

1(GED(g, g′) ≤ 2δ) +

[∑
g∈S∗,g′∈S∗ 1(GED(g, g′) ≤ 2δ)

]2∑
g∈S∗,g′ /∈S∗ 1(GED(g, g′) ≤ 2δ)

])

≈ Õ

 r

|X |

 µ︸︷︷︸
inconsistent samples

+ 2λ︸︷︷︸
valid samples

+

valid samples︷︸︸︷
λ2

µ︸︷︷︸
inconsistent samples

 .

(5)

Recall, that inconsistent samples can be determined through graph edit distance (Defn. 3.5) between
augmented samples. Moreover, that the maximum allowable edit distance between augmented
samples is determined by augmentation strength.

E.2 Connections to the Population Augmentation Graph

The original bound for SpecLoss uses the population augmentation graph (PAG). While we did not
use the PAG in our analysis for ease of exposition, we note that our analysis can be adapted for the
PAG as follows:
Definition E.8 (Population Augmentation Graph [15]). Let Gp be the PAG where the vertex set is
all augmented data X . For any two augmented data g, g′ ∈ X , define the edge weight wgg′ as the
marginal probability of generating g and g′ from a random natural data g ∼ PX :

wgg′ := Eg∈PX [A(g|g)A(g
′|g)]. (6)

To extend our analysis to the PAG, we show that connectivity in the PAG is also determined by
GED. Then, the definition of inconsistent samples, and partition dissimilarity (conductance) straight-
forwardly follow.

Lemma E.9. Connectivity in the PAG is determined by GED. Let g, g′ ∈ X , and g ∈ X . Then,
wgg′ > 0⇔ GED(g, g′) ≤ 2δ.

Proof. By Lemma 3.4, wgg′ > 0⇔ A(g|g) > 0 ∧ A(g′|g) > 0. Moreover, if A(g|g) > 0 then, g
is the augmentation set of g. If g ∈ A(g) then, GED(g, g) ≤ δ. Then, wgg′ > 0⇔ GED(g, g) ≤
δ ∧GED(g′, g) ≤ δ, which in turn applies, wgg′ > 0⇔ GED(g, g′) ≤ 2δ.

Corollary E.10 (Conductance according to GGA). Recall, the conductance φG of a partition Si
in a graph G measures how many edges cross partitions relative to total number of edges a node
possesses and that A(g|g) ≈ 1

|A(g)| . Then,

φG(Si) =

∑
x∈S,x′ /∈S 1(wxx′ > 0)∑

x∈S wx
,

where wx represents the size of x’s edge-set.

Using this definition, we can substitute into the original SpecLoss generalization bound and recover
the result presented in Thm. 3.9.

F Dataset Generation and Experimental Details

We use the motifs shown in Fig. F to define a 6 class graph classification task. It is important to
ensure that the motifs are not isomorphic, as many GNNs are less expressive than the 1-Weisfeiler
Lehman’s test for isomorphism ([56]). For each class, 1000 random samples are generated as
follows: (i) We randomly select between 1-3 motifs to be in each sample. At this time, motifs all
belong to the same class, though this condition could easily be changed for a more difficult task.
(ii) We define the number of content nodes, Cn, as the size of the selected motif, scaled by the

21

0

5

34

6

1
72

Class: A

0
2

3

1

4

5

6
Class: B

0 1

3

6

5
2

4

Class: C
0

3
5

1
4

2

Class: D

0
3

51

2

4

6

Class: E
02

5

1

4
3

Class: F

Content Motifs

Figure 7: Motifs used to determine class labels.

Table 4: Dataset Description

Name Graphs Classes Avg. Nodes Avg. Edges Domain

IMDB-BINARY [57] 1000 2 19.77 96.53 Social
REDDIT-BINARY [57] 2000 2 429.63 497.75 Social
MUTAG [58] 188 2 17.93 19.79 Molecule
PROTEINS [59] 1113 2 39.06 72.82 Bioinf.
DD [60] 1178 2 284.32 715.66 Bioinf.
NCI1 [61] 4110 2 29.87 32.30 Molecule

number of motifs in the sample. (iii) For a given style ratio, we determine the number of possible
style nodes as Sn = ρCn (iv). We define RBG(n) using networkx’s 2 random tree generator:
networkx.generators.trees.random_tree. We note that other random graph generators would
also be well suited for this task. (v) For additional randomness, we create background graphs using
Sn ± 2, and also randomly perturb up-to 10% of edges in sample. We repeat this set-up with
ρ ∈ {0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.5, 8.0} to generate the datasets used
in Sec 4.2.

Experimental Set-up: We follow You et al. [22] for TUDataset experiments. When reporting the
kNN accuracy, we tune k ∈ {5, 10, 15, 20} separately on validation data for each dataset and method
to allow for the strongest baselines. For synthetic datasets we use the following setup. Our encoder is
a 5-layer GIN model with mean pooling. We set input node features to be a constant 10-dimensional
feature vector, and a hidden layer dimension is 32; we concatenate hidden representations for a
representation dimension of 160. Models are pretrained for 60 epochs. Subsequently, we use a linear
evaluation protocol and train a linear head for 200 epochs. All models are trained with Adam, lr =
0.01.

G Related Work

Table 5: Selected Graph Contrastive Learning Frameworks. We provide a brief description of augmentations
used by selected frameworks. Most frameworks use random corruptive, sampling, or diffusion-based approaches
to generate augmentations.

Method Augmentations

GraphCL ([22]) Node Dropping, Edge Adding/Dropping, Attribute
Masking, Subgraph Extraction

GCC ([62]) RWR Subgraph Extraction of Ego Network
MVGRL ([23]) PPR Diffusion + Sampling
GCA ([25]) Edge Dropping, Attribute Masking (both weighted by

centrality)
BGRL ([24]) Edge Dropping, Attribute Masking
SelfGNN ([63]) Attribute Splitting, Attribute Standardization + Scaling,

Local Degree Profile, Paste + Local Degree Profile

Graph Data Augmentation: Unlike images, graphs are discrete objects that do not naturally lie in
Euclidiean space, making it difficult to define meaningful augmentations. Furthermore, while for
images or natural language, there may be an intuitive understanding of what changes will preserve
task-relevant information, this is not the case for graphs. Indeed, a single edge change can completely

2https://networkx.org/documentation/stable/

22

change the properties of a molecular graph. Therefore, only a few works consider graph data
augmentation. [64] note that a node classification task can be perfectly solved if edges only exist
between same class samples. They increase homophily by adding edges between nodes that a
neural network predicts belong to the same class and breaking edges between nodes of predicted
dissimilar classes. However, this approach is expensive and not applicable to graph classification.
[30] argue that information preserving topological transformations are difficult for the aforementioned
reasons and instead focus on feature augmentations. Throughout training, they add an adversarial
perturbation to node features to improve generalization, computing the gradient of the model weights
while computing the gradients of the adversarial perturbation to avoid more expensive adversarial
training [65]. This approach is not directly applicable to contrastive learning, where label information
cannot be used to generate the adversarial perturbation.

Graph Self-Supervised Learning: In graphs, recent works have explored several paradigms for
self-supervised learning: see [66] for an up-to-date survey. Graph pre-text tasks are often reminiscent
of image in-painting tasks [67], and seek to complete masked graphs and/or node features ([68, 13]).
Other successful approaches include predicting auxiliary properties of nodes or entire graphs during
pre-training or part of regular training to prevent overfitting ([13]). These tasks often must be carefully
selected to avoid negative transfer between tasks. Many contrast-based unsupervised approaches
have also been proposed, often inspired by techniques designed for non-graph data. [26, 69] draw
inspiration from [9] and maximize the mutual information between global and local representations.
MVGRL ([23]) contrasts different views at multiple granularities similar to [8]. [22, 62, 25, 24, 63]
use augmentations (which we summarize in Table G) to generate views for contrastive learning. We
note that random corruption, sampling or diffusion based approaches used to create generic graph
augmentations often do not preserve task-relevant information or introduce meaningful invariances.

23

	1 Introduction
	2 Background
	3 Generalization Bounds for CL with GGA
	4 Experimental Verification
	4.1 A Closer Look at the Effectiveness of Invariance to GGA
	4.2 Evaluating Graph SSL Methods in a Controlled Setting
	4.2.1 Synthetic Data Generation Process
	4.2.2 Difficulties in Recovering Style Invariant Representations
	4.2.3 Invariance vs. Separability

	5 Conclusion
	A Contributions
	B Reproducibility and Broader Impact
	C Extended Discussion
	C.1 Extending our Analysis to other Loss Functions
	C.2 Evaluation on a Non-Synthetic Dataset
	C.3 On Using Mutual Information for Analyzing Task-Relevance in Augmentations

	D Generic Graph Augmentations and Graph Edit Distance
	D.1 GGA and Graph Edit Distance

	E Details for Generalization Analysis
	E.1 Generalization Analysis
	E.2 Connections to the Population Augmentation Graph

	F Dataset Generation and Experimental Details
	G Related Work

